a2 United States Patent

Paxson

US009183347B1

US 9,183,347 B1
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND SYSTEM FOR SIMULATION
OF CHEMICAL AND BIOLOGICAL
PROCESSES IN A DISTRIBUTED
TECHNICAL COMPUTING ENVIRONMENT

(75) Inventor: Ricardoe E. Paxson, Boston, MA (US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1290 days.

(21) Appl. No.: 11/060,995

(22) Filed: Feb. 17, 2005
(51) Imt.ClL
G06G 7/48 (2006.01)
GO6F 19/12 (2011.01)
GOIN 33/46 (2006.01)
(52) US.CL
CPC . GO6F 19/12 (2013.01)
(58) Field of Classification Search
CPC GOG6F 19/12

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,490,097 A * 2/1996 Swensonetal. 703/2
5,761,507 A * 6/1998 Govettcoovevveeriennnnn 718/101
8,726,278 Bl 5/2014 Shawver et al.

OTHER PUBLICATIONS

Mendes “Biochemistry by numbers:simulation of a biochemical
pathway with Gepasi 3” TIBS (1997) vol. 22, pp. 361-363.*
Berkenpas, Monica, “Current products available to perform distrib-
uted and/or parallel computing with MATLAB,” (2003).

Husbands, Parry Jones Reginald, “Interactive Supercomputing,” pp.
1-96 (1999).

Gibson, Michael A. et al., “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels,” J. Phys.
Chem. A., vol. 104:1876-1889 (2000).

Gillespie, Daniel T. et al., “Exact Stochastic Simulation of Coupled
Chemical Reactions,” The Journal of Physical Chemistry, vol. 81
(25):2340-2361 (1977).

Panyam, Jayanth et al., “Biodegradable nanoparticles for drug and
gene delivery to cells and tissue,” Advanced Drug Delivery Reviews,
vol. 55:329-347 (2003).

“Parallel Matlab survey” retrieved from the internet at: http://
supertech.lcs.mit.edu/-cly/survey.html, 8 pages, Oct. 12, 2003.
“Mathtools net>MATLAB>Parallel” retrieved from internet at:
http://www.mathtools.net/, 2 pages, Oct. 15, 2004 (Print Date).
“gridMathematica, Technical Computing for the Grid,” retrieved
from the internet at: www.wolfram.com/gridmathematica, 2 pages,
2003.

“Plapack: Parallel Linear Algebra Package,” retrieved from the
internet at: http://www.cs.utexas.edu/users/plapack/, 2 pages, Nov. 2,
2004 (Print Date).

“Matlab Parallelization toolkit,” retrieved from the internet at: http://
hem.passagen.se/einar__heiberg/index/html?k, 2 pages, last updated
on Nov. 19, 2003.

“DistributePP” retrieved from the internet at: http://www.
mathworks.com/matlabcentral/fileexchange/loadFile.do/
ojectld=1287&objectType=file, 3 pages, Nov. 2, 2004 (Print Date).
“Netsolve/GridSolve-2.0,” retrieved from the internet at: http//icl.ce.
utk.edu/netsolve/, 2 pages, Nov. 2, 2004 (Print Date).

“The DP-Toolbox Home Page,” retrieved from the internet at: http://
www-at.technik.unirostock.de/ra_ ac/dp/, 1 page, Jun. 19, 2001.
“Software Documentation:Cornell Multitask Toolbox for
MATLAB,” retrieved from the internet at: www.tc.cornell.edu/Ser-
vices/Software/CMTM/overview.html, 5 pages, Nov. 2, 2004 (Print
Date).

“PMI” retrieved from the internet at: http://www.mathworks.com/
matlabcentral/fileexchange/loadFile.do?objectID=219, last updated
on Mar. 12, 2004.

“MATLAB Parallelization Toolkit 1.20,” retrieved from the internet
at: http://www.mathworks.com/matlabcentral/fileexchange/loadfile.
do?objectld=1227, 3 pages, last updated on Nov. 19, 2003.
“MultiMATLAB: MATLAB on Multiple Processors,” retrieved from
the internet at: http://www.cs.corell.edu/Info/Peoole/Int/
multimatlab.html, 15 pages, May 1996 (Print Date).

“MATmarks: Shared Memory Programming with Matlab,” retrieved
from the internet at: http://polaris.cs.uive.edu/matmarks/matmarks.
html, 2 pages, 1999.

“Parallel Programming with MatlabMPIL,” retrieved from the internet
at: http://arxiv.org/abs/astro-ph/0107406, 1 page, Jul. 20, 2001.
Parallel Matlab: The Next Generation, J. Kepner and N. Travinin, 7th
High Performance Embedded Computing workshop (HPEC 2003),
MIT Lincoln Laboratory, Lexington, MA, retrieved from the internet
at:http://www.astro .princeton.edu/~ivkepner/, 2 pages, Sep. 23-25,
2003.

“Commsim and Multi Toolbox for MATLAB 5,” retrieved from the
internet at:http://www.lapsi.eletro.ufrgs.br/Disciplinas/ ENG__
ELECTRICA/CADENG/Matlab/CommSim/
COMMSIM%20for%20MATLAB%205 htm, 2 pages, Sep. 22,
2005 (Print Date).

“Matlab Parallelization Toolkit,” retrieved from the interne at: http://
www.imy.liu.se/klinfys/einar/misc.html, 4 pages, last updated on
Feb. 28, 2005.

“paralize,” retrieved from the internet at:http://www.mathworks.
com/matlabcentral/files/2 1 1/content/paralize/paralize.html, S pages,
Sep. 22, 2005 (Print Date).

P. L. Springer, “Matpar: parallel extensions for MATLAB”, Proc. Int.
Conf. Parallel and Distributed Processing Techniques and Applica-
tions, vol. 3, retrieved from the internet at: http://www-hpc jpl.nasa.
gov/PS/MAPAR/, pp. 1191-1195, 1998.

“Falcon,” retrieved from the internet at: http://www.csrd.uiuc.edu/
falcon.html, 2 pages, last updated on Feb. 2, 1996.
“AccelChip-MATLAB DSP Algorithmic Synthesis for FPGAs and
ASICs,” retrieved from the internet at:http://www/acce;chip.com/, 4
pages, Sep. 22, 2005 (Print Date).

(Continued)

Primary Examiner — Eric S Dejong
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

Methods and systems are provided for simulating chemical
and biological processes in a distributed technical computing
environment. A technical computing client may associate a
job, comprising one or more tasks, with a chemical or bio-
logical process. The technical computing client can distribute
these tasks to technical computing workers for execution of
the task. The technical computing workers execute the task
and may provide a result of the task for the technical comput-
ing client. As such, the present invention allows the use of
multiple computing resources on a network to perform simu-
lation to facilitate decreasing the computation time.

21 Claims, 22 Drawing Sheets

US 9,183,347 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS
“Menbhir,” retrieved from the internet at: http://www.irisa.fr/caps/
PROJECTS/Menbhir/menhir/orap/, 2 pages, Feb. 16, 1998.
“Accelerating Matlab,” retrieved from the internet at: http://research.
microsoft.com/-minka/software/matlab.html, 2 pages, Sep. 22, 2005
(Print Date).
“parmatlab,” retrieved from the internet at: http://www.mathworks.
com/matlabcentral/fileexchange/loadFile.do?objectld=217
&objectType=FILE, 4 pages, last updated on Nov. 19, 2001.
“CONcurrent LABoratory,” retrieved from the interne at: http://
www.cs.umu.se/research/conlab/, 3 pages, last updated on Dec. 4,
2004.
“Distributed Matlab toolbox,” retrieved from the internet at: http://
www.geocities.com/kyawtuns/tools/html?200522, 1 pages Sep. 22,
2005 (Print Date).
“SG1-Cray Origin2000 Supercomputer Repository,” retrieved from
the interne at: http://scv.bu.edw/SVC/Origin2000/matlab/
MATL ABexample.shtml, 2 pages, last updated on Dec. 12, 2001.

“Parallel Programming with MatlabMPIL,” retrieved from the internet
at: http://www.11.mit.eduw/MatlabMPL/, 13 pages, Jul. 20, 2001 (Print
Date).

“Matlab Mesh Partitioning and Graph Separator Toolbox,” retrieved
from the internet at: http://www.cerfacs.fr/algor/Softs MESHPART/,
3 pages, Feb. 8, 2002.

“MPI Toolbox for Matlab (MPITB),” retrieved from the internet at:
http://etcpe7 .uqr/mpitb.plip, 2 pages, Sep. 22, 2005 (Print Date).
“RTExpress,” retrieved from the interne at: http://www.rtexpress.
com/, 2 pages, Sep. 22, 2005 (Print Date).

“Parallel Programming with MPL” retrieved from the internet at:
http://www.cs.usfca.edu/mpi/, 2 pages, last updated on Oct. 16,2002.
“PVM Toolbox for Matlab (PVMTB},” retrieved from the internet at:
http://atc.ugr.es/javier-bin/pvmtb__eng, S pages, last updated on Apr.
18, 2004.

“qsubfunc,” retrieved from the internet at: http://www.scen.ucsd.edu/
-arno/qsubfunc.php, 2 pages, Sep. 22, 2005 (Print Date).

“TMath 0.2: A Tel Interface to MATLAB and Mathematica,”
retrieved from the internet at: http://ptolemy.eecs.berkeley.edu/other/
tmath0.2/README .html, 9 pages, Jul. 8, 1997.

* cited by examiner

US 9,183,347 B1

Sheet 1 of 22

Nov. 10, 2015

U.S. Patent

80

)
abelio)g

aleM}§OS

071 21eMj0S
uoe|nwIs

SO

wv

VI 3l

L} ‘doeusiu| ylomiaN

9} ‘wnipajy uoe|ieisul

ZL} ‘@o1meq bBunuiod

aoepalu| Jas([ealydels)

011 ‘preogfay

90} ‘fows|y

aoinaQ Aeydsiq fensip

$0} ‘108590014

4113 \

Vil k

US 9,183,347 B1

Sheet 2 of 22

Nov. 10, 2015

U.S. Patent

/] ‘UonelsyIop

02} 31emyos
uolejnwis

w0b—

o€l

14

00/

(1743

gl 314

09] ‘lanies

07] 9/emyos
uone|nwis

W20

0¢}

ori

0¢l

0G} a0

0Z] 2/emyos
uole|nIS

20—

US 9,183,347 Bl

Sheet 3 of 22

Nov. 10, 2015

U.S. Patent

07} ‘uoneisyiopm

072 ""oy0p Bupndwo) jeaiuyos]

002

yZ Sl

(1793

ori

o€l

067 ‘131D

06¢ ‘Wua10 bugndwo) [eatuyosy

US 9,183,347 B1

Sheet 4 of 22

Nov. 10, 2015

U.S. Patent

011 'uoielsyiop

017 12310
Bugndwon
|ealuyoa |

0¢l

0p)

g0z

0¢t

g7 31

09] ‘1on9s
H ‘1ebeuep qopr

092 'WSIUBYS\
uosngusIq
yse] onewony

0¢l

ovi

0¢l

061 ‘Wal)

- 06Z ‘W8I0

Bundwion
[ea1uyoa |

US 9,183,347 B1

Sheet 5 of 22

Nov. 10, 2015

U.S. Patent

NOZL ‘UOBEISHIOM

NO.Z “13NIOM
Bunndwon
|eojuyoa |

09} ‘lanag
¢9Z '1abeuey qor

09Z 'WsIUeyoap
uonnquisiq
yse| onewojny

g0/} 'UoneISHIoM

0.2 1840
Bupndwon
|ealuyoa |

V0.1 'uoneisyiop

g0/ "15%i0M
Bunndwon
[E21UY08 |

V0.2 3%0M
Bunyndwon
[eoluyoa |

DC 3t

0S1 18D

0S¢ eld
Gunndwon
[eoIuy28 |

US 9,183,347 B1

Sheet 6 of 22

Nov. 10, 2015

U.S. Patent

V€ S1

NO/Z}J "UOREISHIOM

NOLZ 19310
Bunndwon
[ea1uyoa)

A

\4

g0/} ‘uonesyom 06} ‘W8l

9077 ‘1% oM Wmlm _Mcm__o
Bunndwon unndwo?n
|eoaluyoa | ¢1sel [ea1uyos |

A

Y

V0.1 ‘uoneisyiopm

Y0.Z 1o%10M
Bunndwon
[eauyoa |

US 9,183,347 B1

Sheet 7 of 22

Nov. 10, 2015

U.S. Patent

g€ 31

NOZ] ‘uonejssiop

NO0.Z '1oYIoM
Buindwon
(ealuyos]

%ﬁmﬁ&

A

A2

%

G071 'UOEISYIOM

§0/Z 9o
Bunndwon
[ealuyoa |

091 '1oAles

)

alinsey

»(Qinsey

Q..

¢isel

A

Y

V0/] ‘uoneisyiopy

V0.2 '19%iI0M
buyndwon
[ealuyos |

\\\\ﬁ\i\wﬁﬂ\\\
A\\\\(\«ﬂm\k\\\\

o1sel

0o

—

|t

0S1 ‘Wald
052 Wal)
diinsay Bunndwo)
30
(%m
/.,%,o/\

/ 092 ‘Wsiueyos|y
uonnquisiqg 3se L dnewoiny

US 9,183,347 B1

Sheet 8 of 22

Nov. 10, 2015

U.S. Patent

N0/} ‘uoneisyiop

N0
JENT T
Bunndwo)
[eauyds L

D€ 81

&\S\ \S.wm ™

A

Y

\?\S\wm 2]

g0/} 'uoieIsyiom

g0/2

JOYIOM
Bunndwon
[ealuyos |

alinsey

|

cxsel

A

Y

V0.L ‘uoieisyiopm

volt

JoYIOM
Bugndwo)
[EANUYI3 L

e |
A\\ﬂmm\m\k\\

09] ‘1enies

—

—

9000 8

GLe
0SJ el
W-NofseL . —
AT W-NLsiinse |7l wnisel | peg
|isel AN 8D
Lqor psel | Bunndwo)
o7 \qor | [Bdluyos]

.

§9¢
laBeuepy
qor

~ /92 ‘enend qor

\
__ 097 'WSIUBYI8}\ UOHNGUISIC ¥SEL JeWOlNY

US 9,183,347 B1

Sheet 9 of 22

Nov. 10, 2015

U.S. Patent

NO/| ‘uoljeISHIoM

NOLC
JNIOM
Bunndwon
[eaIuyoa |

ds st

g071 ‘uoneisyiopm

80.¢

19YIOM
Bunndwon
|ealuyds |

09} '19M9S

697 ‘1ebeuep qor

A

Y

V0Z}] 'uoneisiopm

V0.2
I9MIOM
Bugndwon
[ealuyoa |

s.\s\bmwm\
R N-NXSse L
ey ‘«@l oIsel
Lqor
\\\Qmmw\m\\ | e
A\\\\\\ —
psel 097 ‘WSIuBYosp
uoINGUISI e deLojNY

743
0G1 a0
Lqor synsay | -NYseL 05z
AC pUETTg)
pysel | Bupndwon
[BOIUYOS |

US 9,183,347 B1

Sheet 10 of 22

Nov. 10, 2015

U.S. Patent

p Sl

NOG} eld
S|nsay £isel NOSZ el
Bl S)INSaY ZYSE > Duinduwog
NOZF ‘uoeisyiop _ NVM%_ L |eoluyoa
N0.Z ‘18%10M y NO09J 18Mes
Bundwon .
[ealuyos | Asel A | N09Z ‘wsiueyospy]
Jnsay uonnquisiq
: yse L onewojny)
. N S)Nsay ¢qor
— > ‘1abeuepy qo —
g0Z} 'woleisiiom NS¢ Nt eqor 8057 WeiD
g0.2 "1anoMm _ *| §06Z a1
Buindwo) Asel V09] '19n8S | Bugndwo)
[l Ve Jinsoy [e2IUYD3 |
V092
wsiueyosiN | ve9Z &_swwnmvw o
V0.1 'UOnEISYIOM uonnquisiqg |Jabeuepy —
Y0/ '1oxoM o_um_wmo_?«‘ o TS Y T
Bugndwo) WSE] — _ Laor c%mw%co__o
[E21UYD3 | Jnsey _ upndwo)
ﬂ_zww_mmm_wmh [eoa1uyos |
007

U.S. Patent

Nov. 10, 2015

Sheet 11 of 22

Technical Technical
Computing Computing
Client, 250 Worker, 270
Method, 500
Associate
Task [step 502
\ 4
Submit Task :
to Obtain Task
Technical » from Technical
Computing Computing Client
Worker Step 504
y
Execute
Task
A
Generate Result
Obtain Result :
from Technical Pg"?gihRniecsaullt
Computing) :
Worker Step 514 Computing Client

Fig. 54

US 9,183,347 B1

Step 506

Step 508

Step §10

Step §12

U.S. Patent

Nov. 10, 2015 Sheet 12 of 22 US 9,183,347 B1
Technical Automatic Task Technical
Computing Distribution Computing
Client, 250 Mechanism, 260 Worker, 270
Associate Register Register for Task
Task | Step 502 Worker [* When Available
Step 529
v Step 527
Submit Task
touAumt'omgﬁc N AMa!<e Task
Distribution » Available for
I :
Register for Register Client
Notification for
of Result | Step 534 Notification | Step §36
Provide Task | Receive Task ot
Notification |~ Notification ep
Step 538 540
y
Provide Task Obtain Task | Step
Step 542 544
y
Execute Task
Step 508
Generate Result Step
510
Obtain | Provide
Result ‘Step 550 Result | Step 518
Receive |, Notify
Notification Step 554 Client | Step 552
Resun [+ o Roaul | step 558
esu esu
Step 556 N\ Wethod, 525

Fig. 5B

U.S. Patent

US 9,183,347 B1

Nov. 10, 2015 Sheet 13 of 22
Technical Job Automatic Task Technical
Computing Manager Distribution Computing
Client, 250 265 Mechanism, 260 Worker, 270
Associate : Register
More Tasks | Step 562 Waner |[2 e
asks en
ore p Step 529 | available S;;';)
4
Group Tasks
Into Job |Step 564
Submit »| Obtain
Job |Step 566 |_Job_|Step 568
Submit Make
One or » Tasks
More Tasks |Step | Available |Step 572
570 7
: Register
gel ti)ste‘z N §§| t')”gg& Jot?lMgr
allbac . or
Sst;’f of Client Sst;g Notification |Step 578
y Yy
P_rrovige Receive
as Task
Notification |Step Notification S5t493
538
A 4
Provide Obtain |Step
Task Step 542 Task 544
v
Execute Task Step
508
v
/y Generate Result Step
Method, 560 T 510
. gbtaiﬂ F;{ovidlf Step
esu esu
Fl g. 5 C] Step 550 518

Go to Method 585 of Fig. 5D

U.S. Patent Nov. 10, 2015 Sheet 14 of 22 US 9,183,347 B1

Technical Job Automatic Task Technical
Computing Manager Distribution Computing
Client, 250 265 Mechanism, 260 Worker, 270
Continued from Continued from
Step 576 Step 550
Fig. 5C Fig 5C
l- Notify Job
Receive
- LSV M
Step 589 | Notification ofaé‘ggj; Step 587
y Yy
Obtain Provide
Step 591| Result | Result |Step 593
y
Caitoack A
dalibac rou
Function |Step Calback | Step 595
597
v y
Obtain Provide

Result Step Result |Step 599
598
Method, 585

Fig. 5D

US 9,183,347 B1

Sheet 15 of 22

Nov. 10, 2015

U.S. Patent

V9 31

029 ¢09
~— —
[929 IS 1£4"] [229
1 EEE ! 0 ' 190H
es|e} 1000 ¢0i8H I80H o —
os|e} S00 :lo] ¢0igH e —
as|e} 1’0 €0ig 3D e—
os|e} €000 g €019 @ —
JuEIsuoO) Junowy [eniuj aweN 19 o
ajqe) seads sepads
guonoesy e —
puoioesy e —
guoioesy @ —|
os|ej L G330 19 <-8) Zuooesy e —|
as|e) L). 2v20IaH J40H + €048 <- Z0J8H Luonoedy ¢ —!
as|ey e £4,20/8H.£0/9| 201gH + 3D <- ZDJ8H + £0/9 suonoeay
osiej o 1.20/gH.J8 180H <- 20J8H + .9 28 ®
as|e) 1 11.£0/89./18] 180H + ZOIgH <- €0.9 + .9 sjuswpedwod [H-)
ajqisianay Jsjswesed MET JlBUNy uoyoeay _wuos_mgoz.wo‘_ov_u_w_..._ [~
]] , | seeruomess | =
819— 919 L9 ~Z19 EE
Qh@ 34

US 9,183,347 B1

Sheet 16 of 22

Nov. 10, 2015

U.S. Patent

31,

S

=] BS[ET — U]
ES ZES_YNHUW

ESE 0 B5E910.d_YNHW

os|e,. 0 OAISH_vYNHW

es|e 0 HSId_VYNYW

|| asie, 0 Heuq YNHW

as|e, V.19 LECEL ‘YN

SS|E; 0 SEeug:papjojund
BS[e, 0 Paplojund |

aS[E; 0 3Seajoid
oS[E, 00821 Papiold |

oS[e, 0 NAISH
EER HSd |

5 SS|e. Meu

JUBSu0) [Junowy [eniu] BWEN

3[qe sa193dg|
anjy A UOIPY SSEIN TT0Jd YNHW <- Ud'd¥NY-CES
B3S|E] N UOIPY SSEN |INU <- NAISH
— anl A NAISH <- NAISH_VNYW
os|e] A iU <- NAISH_YNYW
onJ A NAISH_YNYW <- Yd'dYNY ZES
aS|e; M INu <~ [{Sid
ani by HS1d <- HSId YNYW
as|e. by U <- HS14 YNYW
anJ: Y HSId_VYNYHW <- Yd'dyNY'Z€S

oy 3 Paplojund <- pap|oid

EID) M Papioid + Meuq:papiojun

EI) v UOIOY SSEN TTojund <- MeuQ + pepjojund

1)) UONOY SSEN MEUQ:ZES <- MeUQ + 2es
EEE N UOIOY SSE JiNT <- euq
ELDY) UONSY SSE SEUQ <- YBuQ YNYW
asiej P UOIOY SSE INU <-}EuQ YNYW
anJ P UONOY SSEIN Meug YNYW <- Yd' dyNY'ZES
ElD) UoII0Y SSEA “NY.2£5 <- dVNY.ZES + Yd
any) UoIOY SSEN dVNY:ZES <- JVNY + €S
EHE 3 UONOY SSEN IINU <~ €S
angy Y U0y SSENN Z€S <- ¢¢_YNYW
ESES) UOIPOY SSEN INT <= 2¢_VYNIW
Ny A UOIPOY SSE ZE_VNYW <- BA4dYNY:0/S
ELY by UOIOY SSE "NY:0/5 <- JYNY:0ZS + bd
o an) pY] uouoy ssepy dVNM:0/S <- dYNM + 0/S

EIEELEDN I EVEIEE [E] ONjauny [uoijoeay

3|qE L UONIED

6d:dwNY:04S <
dVNY0LS <
Yd:dvNY:ZES <
dVYNY-ZES <
NeuQ:zes <

0is <

ces <

yd <

6d <

IInu <
ZES_YNYW <
asesjord_YNHW <
NAISH_YNYW <
HSI4_WYNYW <
Yeud YNYW <
dV¥NY <

seuq papiojund <
pap[ojund < —
85E3)0Id < —
PopIO}d < —
NAISH < —

HSld < —

Neuq < —
saads [
suonoeay [

Lt re eyl

yooysieay _
[=1]

p3 L]

US 9,183,347 B1

Sheet 17 of 22

Nov. 10, 2015

U.S. Patent

X X o0zz
m Jasdp {yNyw)o 0zzl '
i 062L

s0z~3 e & e [V L

Te% 0ELL (ynww)o

............................ 6

: 7 (7New)
plojund % 8 K
popy 2. "yeuq 10X

Erod) o)

awouab 1j0a '3

cg 0161

101dD

| 00¢1 X
/] 27 Teo (YN oL
. Eseaiondu) > (aseaold);

2

]
]
[
Ll
]
[
]
]
]
]
L]
]
|
1
1
)
)
1
1
1
1
|
t
]
]
)

)] N
wm Xm0
@ [an|usE [_run]e [Salaatiena 0
dioH $|001 leuuod uoReiNWIS MelA P a4
B3

022
81,
911
vl
47
011
80/
90.
v0.
0.

US 9,183,347 B1

Sheet 18 of 22

Nov. 10, 2015

U.S. Patent

0/ 'UOleISHIOM

Q Sl

09] '1onag

027 1o0I0M | [« Nmﬁwmww
Bundwon o
[BOIUYIB] L YSEL

J3)siboy >

gisel

|¥Sel

69z ‘1abeuepy qor

898 ‘(004 JONIOM

ﬁq..w ‘wisiueyospy
uonnquisiqg se dnewony

698 ‘oseqeIeq | ohe 03T U910
1| qor
_ Ngor
198 ¢aor suogoung | |[zwser] 06Z WslD
‘]auuny qor Laor Yoeqied sel | Bupndwon
onsno - 1907 | [edwuyoa)

US 9,183,347 B1

Sheet 19 of 22

Nov. 10, 2015

U.S. Patent

6 SL

0/] ‘UoneIsHIoM

091 '1an8S

69z ‘1ebeueyy qor

109[q0

506

Jabeuep qor /¢

0.2

§96

‘JOYIOM

0S] Wa1D

Bundwo)
[ealuyos |

046

8046

062 Wald
bunndwo?)

|eoluyo8 |

[qo qor)«
~——vos6 SOUI\

092 ‘WSIUBYOB
UOINGUSIQ e oewoIny

U.S. Patent Nov. 10, 2015 Sheet 20 of 22 US 9,183,347 B1

04 05 DB 07 Y089 08 ¢ o1
. . Time;sec . i

Fig. 104

- Exegnenial Decay X2 Z ¢

e a i

T &% 7 T Y T T
S + S5AX
A 44444444 + SSA Z
' : : O Expl Tau: X
o ExplTaw Z [
* lmpl Tau: X | |
= Impl Taw: Z

05 08 07 ‘08 09+ 1¢
Time: sec_ |

Fig. 10B

US 9,183,347 B1

Sheet 21 of 22

Nov. 10, 2015

U.S. Patent

(feuag) buiweang

VII Sl

NOZ) 80/} VoLl
‘uoneIsHIoMm ‘uoieisyIopm ‘uoije)syIopm
N0/ 80/ vo.Z
19YI0M JOYIOM 19YI0M
Bugndwon Bungndwon Bunndwon
[B2IUYDD] [B2IUYo3 | [eauyoa]
061 a1
0S¢
Jusio
Buyndwon
|BAUYIS).

pajnquisiq
NO.Z} g0} vo.i
‘uoleISHIOM ‘uonejsyiop || ‘uoneisyiom
NO.LZ 80/¢ V0.2
JOYIOM JNIOM SN
Bungnduwion Bugndwon Buindwon
[B21UYD3] [B2IUY2D] [B21LUY2D]

X

A 4

/

09} '1anss

09Z 'WaLy

9z
1abeuepy qor

¢

05} “we1D
052
Juaiy

Buyndwon

[Boluy9}

U.S. Patent Nov. 10, 2015 Sheet 22 of 22 US 9,183,347 B1

Technical
Computing
Client
250

Client, 150

A

y

Job Manager,
265

ATDM, 260

Server, 160

J §

y

Technical Technical Technical
Computing Computing Computing
Worker Worker Worker
270A 270B 270N

Workstation, Workstation, Workstation,
170A 170B 170N

A
A 4

Parallel (Distributed + Streaming)

Fig 11B

US 9,183,347 B1

1
METHODS AND SYSTEM FOR SIMULATION
OF CHEMICAL AND BIOLOGICAL
PROCESSES IN A DISTRIBUTED
TECHNICAL COMPUTING ENVIRONMENT

TECHNICAL FIELD

The present invention generally relates to simulation of
chemical and biological processes, and particularly the dis-
tribution of the processing of simulations of chemical and
biological processes.

BACKGROUND INFORMATION

The development of new drug targets by the pharmaceuti-
cal industry is time-consuming and expensive because a large
number of possible targets need to be tested before the mol-
ecule or compound with the desired properties is found or
formulated. Along the same argument, but not for the purpose
of' new drug development, are the activities or synthetic biol-
ogy. Here, biological entities are designed to perform a par-
ticular function. A particular example of'this case is the devel-
opment of biological nanomachines that might for example
be used as programmed drug delivery systems. (See J. Pan-
yam, V. Labhasetwar, Biodegradable nanoparticles for drug
and gene delivery to cells and tissue, Advanced Drug Delivery
Reviews, 55 (2003) 329-347.) As in drug discovery efforts,
the formulation of a compound with desired properties is
difficult due to the large variety of possible targets and the
even larger context or system in which they must perform
their function. Currently much of the work done to investigate
the properties of these compounds is done in a wet-lab requir-
ing many tedious and error prone experiments.

Development of chemical substances and nanomachinery,
in addition to being time-consuming, can generate potentially
dangerous intermediate substances. For example, a molecule
used as transport for a drug in a drug delivery system could by
its mere presence in the organism, stimulate the overproduc-
tion of some other protein. The overexpressed protein could
act as a lethal toxin for the organism. Another possible com-
plication is that the nanomachinery itself may mutate over
time and either lose its original function or worse adversely
interfere with the viability of the organism.

Another problem facing the drug development activity is
that, due to the cumbersome nature of experimental data
collection, it is typical to limit experiments by narrowing the
range of tested inputs and in general isolating the subsystem
of interest. This limitation allows for the possibility that new
drugs have unforeseen side-effects.

Moreover, current methods of obtaining data for biological
processes are even more time-consuming than those associ-
ated with chemical processes, because the latter generally
require laboratory experiments that lead to animal experi-
ments and clinical trials. From these trials and experiments,
data are obtained which, again, usually focus on a very narrow
part of the biological system. Only after numerous costly
trial-and-error clinical trials and constant redesigning of the
clinical use of the drug to account for lessons learned from the
most recent clinical trial, is a drug having adequate safety and
efficacy finally realized. This process of clinical trial design
and redesign, multiple clinical trials and, in some situations,
multiple drug redesigns requires great expense of time and
money. Even then, the effort may not produce a marketable
drug. While conclusions may be drawn by assimilating
experimental data and published information, it is difficult, if
not impossible, to synthesize the relationships among all the
available data and knowledge.

20

25

30

35

40

45

50

55

2

The various challenges faced by the aforementioned activi-
ties in chemical and biochemical research make it desirable to
have software and methods for modeling, simulating, and
analyzing biological processes in-silico rather than in-vitro or
in-vivo. The goal of this approach is to provide a more com-
prehensive view of these biological systems prior to costly
experiments and to clinical trials thereby reducing the search
space for drug targets and useful nanoparticles.

The simulation of biological systems requires the use of
many modes of computation such as continuous time, dis-
crete step, hybrid, particle level among others. The need for
these arises from the various simplifying assumptions made
in order to make the problem tractable using today’s com-
puter technology and resources. At the most basic level, the
particle based approach, every molecule in a cell is accounted
for individually. Given the number of molecular components
in a cell this approach is prohibitively expensive unless it is
used for a relatively small number of molecules in the overall
system. Approximations can be made which result in a sig-
nificant reduction in the computational cost. One class of
simplifications group like-molecules and treat the entire
group as one variable. This approach allows the development
of probabilistic methods and well as differential ones, which
are much less expensive in terms of computational cost. In
effect, there is a continuum of methods varying from high
fidelity, compute intensive to approximate and less expensive
methods. Hybrid solvers are those that mix one or more of
these methods to optimize the use of computational resources
while achieving a high level of fidelity.

One such method which accounts for the random nature of
molecular interactions is called a stochastic simulator; it may
be used to simulate the time varying behavior of a collection
of chemically interacting molecules in a chemical or biologi-
cal system. In this case, the simulator maintains a list of
reactions in the chemical or biological system that “could”
happen and moves the state of the system forward through
time in a two-step process. First, the simulator determines
which reaction in the list of reactions will be the next to occur,
and the time at which that reaction will occur. Second, the
simulator simulates the reaction, adjusting the quantities of
each type of molecule as specified by the stoichiometry of the
reaction. This process is repeated iteratively as the system is
marched forward in time. (**° D. Gillespie, J. Phys. Chemis-
try, 81, 25 (1977).)

However, a single workstation can be limiting to the size of
the problem that can be solved, because of the relationship of
the computing power of the workstation to the computing
power necessary to execute computing intensive iterative pro-
cessing of complex problems in a reasonable time. For
example, a simulation of a large complex biological model
may take a reasonable time to run with a single computation
with a specified set of parameters. However, the analysis of
the problem may also require the model be computed mul-
tiple times with a different set of parameters to understand the
behavior of the model under varied conditions. This could
require thousands of computations to analyze the problem as
desired, and the single computer would take a substantial
amount of time to perform these simulations. In this case, the
single computer would be allocated full-time to performing
the computation while many computer resources on the net-
work may be idle. Additionally, the benefit of the interactive
features of the software is reduced as the computation time
increases.

With many biological and chemical systems requiring
larger and more complex modeling, computations accord-
ingly become more resource intensive and time-consuming.
When a computation becomes so large and complex that it

US 9,183,347 B1

3

cannot be completed in a reasonable amount of time on a
single computer, a solution to decrease the computation time
is needed.

However, a single workstation can be limiting to the size of
the problem that can be solved, because of the relationship of
the computing power of the workstation to the computing
power necessary to execute computing intensive iterative pro-
cessing of complex problems in a reasonable time. For
example, a simulation of a large complex biological model
may take a reasonable time to run with a single computation
with a specified set of parameters. However, the analysis of
the problem may also require the model be computed mul-
tiple times with a different set of parameters to understand the
behavior of the model under varied conditions. This could
require thousands of computations to analyze the problem as
desired, and the single computer would take a substantial
amount of time to perform these simulations. In this case, the
single computer would be allocated full-time to performing
the computation while many computer resources on the net-
work may be idle. Additionally, the benefit of the interactive
features of the software is reduced as the computation time
increases.

With many biological and chemical systems requiring
larger and more complex modeling, computations accord-
ingly become more resource intensive and time-consuming.
When a computation becomes so large and complex that it
cannot be completed in a reasonable amount of time on a
single computer, a solution to decrease the computation time
is needed.

SUMMARY OF THE INVENTION

The present invention provides methods and a system for
simulating chemical and biological processes in a distributed
technical computing environment. A technical computing cli-
ent may associate a job, comprising one or more tasks, with a
chemical or biological process. The technical computing cli-
ent can distribute these tasks to technical computing workers
for execution of the task. The technical computing workers
execute the task and may provide a result of the task for the
technical computing client. As such, the present invention
allows the use of multiple computing resources on a network
to perform simulation to facilitate decreasing the computa-
tion time.

In accordance with a first aspect, the invention involves a
method for simulating chemical reactions in a distributed
technical computing environment. The method comprises the
steps of associating, on a technical computing client, a first
task with a simulation of a chemical reaction; and submitting
the first task to an automatic task distribution mechanism to
make the first task available to a technical computing worker.
The automatic task distribution mechanism may then provide
the first task to a first technical computing worker. The first
technical computing worker has a technical computing envi-
ronment for executing the first task. The result of the executed
task may then be provided back to the automatic task distri-
bution mechanism and technical computing client.

In accordance with another aspect, a method is provided
for simulating a chemical reaction in an object-oriented dis-
tributed technical computing environment. The method com-
prises the steps of associating, on a technical computing
client, a first task object with a simulation of a chemical
reaction; and submitting, by the technical computing client,
the first task object for distribution to a technical computing
worker.

In accordance with another aspect, the invention involves a
system for simulating chemical reactions in a distributed

10

15

20

25

30

35

40

45

50

55

60

65

4

technical computing environment. The system comprises a
technical computing client associating a first task with a
simulation of a chemical reaction and submitting the first task
to distribute for processing in a technical computing environ-
ment; and an automatic task distribution mechanism in com-
munication with the technical computing client, the auto-
matic task distribution mechanism receiving the first task
submitted by the technical computing client and making the
first task available to a technical computing worker. The sys-
tem may also include a first technical computing worker in
communication with the automatic task distribution mecha-
nism, the technical computing worker having a technical
computing environment for performing technical computing
of a task, the first technical computing worker obtaining the
first task from the automatic task distribution mechanism.

In accordance with another aspect, the invention involves a
medium holding instructions executable in an electronic
device. The instructions comprise associating, on a technical
computing client, a first task with a simulation of a chemical
reaction; and submitting the first task to an automatic task
distribution mechanism to make the first task available to a
technical computing worker. The instructions may also
include providing, by the automatic task distribution mecha-
nism, the first task to a first technical computing worker to
execute the first task, the first technical computing worker
having a technical computing environment.

In accordance with another aspect, the invention involves a
method for distributing the processing of a simulation of a
chemical reaction in a technical computing environment. The
method comprises the steps of associating, on a technical
computing client, a first job with a simulation of a chemical
reaction, the first job object associated with one or more tasks,
a first task of the one or more tasks associated with a simula-
tion of a chemical reaction; providing to a first job manager,
the first job object; and providing, by the first job manager, the
first task to an automatic task distribution mechanism to make
the first task available to a technical computing worker for
execution. The technical worker may then execute the first
task and provide the result back to the automatic task distri-
bution mechanism, job manager, and technical computing
client.

In accordance with another aspect, a method is provided
for simulating a chemical reaction in an object-oriented dis-
tributed technical computing environment. The method com-
prises the steps of associating, on a technical computing
client, a first job object with a simulation of a chemical
reaction, the first job object associated with one or more tasks
objects, a first task of the one or more tasks associated with a
simulation of a chemical reaction; providing to a first job
manager, the first job object; and providing, by the first job
manager, the first task object to an automatic task distribution
mechanism to make the first task object available to a tech-
nical computing worker for execution.

In accordance with another aspect, the invention involves a
method for simulating a biological process comprising a plu-
rality of chemical reactions in a distributed technical comput-
ing environment. The method comprises (a) associating, on a
technical computing client, a first job with a simulation of a
biological process, the first job comprising one or more tasks
associated with the chemical reactions of the biological pro-
cess being simulated; and (b) providing to a first job manager,
the firstjob object; and (c) providing, by the first job manager,
the first task first job to an automatic task distribution mecha-
nism to make the first task available to a technical computing
worker for execution. The first task may then be provided to
the first technical worker. The first technical computing
worker has a technical computing environment for executing

US 9,183,347 B1

5
the first task. The result of the executed task may then be
provided back to the automatic task distribution mechanism
and technical computing client.

The details of various embodiments of the invention are set
forth in the accompanying drawings and the description
below. Other features and advantages of the invention will
become apparent from the description, the drawings and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
may be better understood by referring to the following
description taken in conjunction with the accompanying
drawings, in which:

FIG. 1A is a block diagram of a computing device for
practicing an embodiment of the present invention;

FIG. 1B is a block diagram of a distributed computing
system for practicing an illustrative embodiment of the
present invention;

FIG. 2A is a block diagram of the components of an
embodiment of the present invention in a two-node net-
worked computer system;

FIG. 2B is a block diagram of the components of an alter-
native embodiment of the present invention in a multi-tier
networked computer system;

FIG. 2C is a block diagram of the components of an exem-
plary embodiment of the present invention in a distributed
network computer system;

FIG. 3A is a block diagram of the direct distribution mode
of operation of the present invention;

FIG. 3B is a block diagram of the automatic distribution
mode of operation of the present invention;

FIG. 3C is a block diagram of the batch automatic distri-
bution mode of operation of the present invention;

FIG. 3D is ablock diagram of an exemplary embodiment of
the batch automatic distribution mode of operation of the
present invention;

FIG. 4 is a block diagram illustrating a multiple mode of
operation embodiment of the present invention;

FIG.5A is a flow diagram of steps performed in an embodi-
ment of FIG. 3A;

FIG. 5B is a flow diagram of steps performed in an embodi-
ment of FIG. 3B;

FIG. 5C and FIG. 5D are flow diagrams of steps performed
in a batch mode of operations of the present invention;

FIG. 6A is a screenshot depicting one embodiment of a
tabular modeling environment;

FIG. 6B is another screenshot depicting an embodiment of
a tabular modeling environment;

FIG. 7 is a screenshot of one embodiment of a graphical
user interface that facilitates construction of block diagram
representations of chemical reactions or biological processes;

FIG. 8 is a block diagram depicting the details of a job
manager comprising the automatic task distribution mecha-
nism;

FIG. 9 is a block diagram illustrating the use of objects for
user interaction with an exemplary embodiment of the dis-
tributed system;

FIG. 10A is plot of results obtained by a distributed simu-
lation of a chemical reaction using an object oriented inter-
face of one embodiment;

FIG. 10B is plot of results obtained by a distributed simu-
lation of a chemical reaction using functional procedure calls
of one embodiment;

25

35

40

45

50

6

FIG.11A is a block diagram illustrating an operation of the
present invention for distributed and streaming technical
computing; and

FIG. 11B is ablock diagram illustrating an operation of the
present invention for parallel technical computing.

DETAILED DESCRIPTION

Certain embodiments of the present invention are
described below. It is, however, expressly noted that the
present invention is not limited to these embodiments, but
rather the intention is that additions and modifications to what
is expressly described herein also are included within the
scope of the invention. Moreover, it is to be understood that
the features of the various embodiments described herein are
not mutually exclusive and can exist in various combinations
and permutations, even if such combinations or permutations
are not made express herein, without departing from the spirit
and scope of the invention.

The illustrative embodiment of the present invention pro-
vides for dynamic distribution of simulations of chemical and
biological processes by associating tasks with the chemical or
biological processes. The tasks are distributed from a techni-
cal computing client to remote technical computing workers
for execution of the tasks on multiple computers systems.
Tasks associated with the simulation of chemical and biologi-
cal reactions on a technical computing client and may be
additionally organized into jobs. A job is a logical unit of
activities, or tasks that are processed and/or managed collec-
tively. A task defines a technical computing command, such
as a MATLAB® command, to be executed, and the number of
arguments and any input data to the arguments. A job is a
group of one or more tasks. The task can be directly distrib-
uted by the technical computing client to one or more tech-
nical computing workers. A technical computing worker
executes a task and may return a result to the technical com-
puting client.

Additionally, a task or a group of tasks, in a job, can be
submitted to an automatic task distribution mechanism to
distribute the one or more tasks automatically to one or more
technical computing workers providing technical computing
services. The technical computing client does not need to
specify or have knowledge of the technical computing work-
ers in order for the task to be distributed to and computed by
a technical computing worker. The automatic task distribu-
tion mechanism can distribute tasks to technical computing
workers that are anonymous to any technical computing cli-
ents. The technical computing workers perform the task and
may return as a result the output data generated from the
execution of the task. The result may be returned to the
automatic task distribution mechanism, which, in turn, may
provide the result to the technical computing client.

Furthermore, the illustrative embodiment provides for an
object-oriented interface in a technical computing environ-
ment to dynamically distribute tasks or jobs directly or indi-
rectly, via the automatic task distribution mechanism, to one
or more technical computing workers. The object oriented
interface provides a programming interface for a technical
computing client to distribute tasks for execution by technical
computing workers.

Dynamic systems, such as biological processes and chemi-
cal reactions, are typically modeled as sets of differential,
difference, algebraic, and/or recursive equations. At any
given instant of time, these equations may be viewed as
relationships between the system’s output response (“out-
puts”), the system’s input stimuli (“inputs™) at that time, the
current state of the system, the system parameters, and time.

US 9,183,347 B1

7

The state of the system may be thought of as a numerical
representation of the dynamically changing configuration of
the system. For instance, in a physical system modeling a
simple pendulum, the state may be viewed as the current
position and velocity of the pendulum. Similarly, a signal-
processing system that filters a signal would maintain a set of
previous inputs as the state. The system parameters are the
numerical representation of the static (unchanging) configu-
ration of the system and may be viewed as constant coeffi-
cients in the system’s equations. For the pendulum example,
a parameter is the length of pendulum and for the filter
example; a parameter is the values of the filter taps.

Types of mathematical models used in the study of
dynamic systems include differential equations, difference
equations, algebraic equations, and hybrid models. For mod-
eling biological processes and chemical reactions, a stochas-
tic model may be useful. This model describes systems using
stochastic techniques, such as Gillespie, Gibson/Bruck, and
T-leaping.

For example, the Gillespie stochastic technique uses an
algorithm to numerically simulate the time evolution of a
given chemical system. In the Gillespie technique, reaction
events given selected probabilities of occurring, and the
events which occur change the probabilities of subsequent
events. The algorithm determines, for a system in a given
state, the next reaction to occur and the time that the next
reaction occurs using probability. The algorithm is based on a
quantity P(t,u), which is the probability that a reaction u will
occur at the time interval t. The probabilities are based on the
classical rate coefficients (k), the volume of the container,
which can be a cell, a partition of a cell, a compartment of the
cell, such as the nucleus or other organelles, or other con-
tainer, and the concentration of reactants in a given reaction.
Once a time and reaction have been computed, the method
carries out the reaction, i.e., it updates the state of the system
to reflect the transformation of reactants into products, then
increments the time by t and determines another reaction to
occur and when the reaction will occur. The Gillespie tech-
nique is described in detail in the article: Gillespie, D. T. 1977,
Exact Stochastic Simulation of Coupled Chemical Reactions,
Journal of Physical Chemistry, vol. 81, pp. 2340-2361.

The Gibson/Bruck stochastic technique is a variation of the
Gillespie algorithm and described in the journal article Gib-
son, M. A., and J. Bruck, Efficient Exact Stochastic Simula-
tion of Chemical Systems with Many Species and Many Chan-
nels, 2000 Journal of Physical Chemistry A, vol. 104, pp.
1876-1889.

One skilled in the art will recognize that any suitable sto-
chastic technique for simulating the time evolution of a given
chemical system may be utilized in the present invention.
When simulated stochastically, this reaction occurs at a ran-
dom time determined according to a probability distribution
associated with that reaction. The reaction time may be deter-
mined by drawing a random number from the probability
distribution.

FIG. 1A depicts an environment suitable for practicing an
illustrative embodiment of the present invention. The envi-
ronment includes a computing device 102 having memory
106, on which software according to one embodiment of the
present invention may be stored, a processor (CPU) 104 for
executing software stored in the memory 106, and other pro-
grams for controlling system hardware. The memory 106
may comprise a computer system memory or random access
memory such as DRAM, SRAM, EDO RAM, etc. The
memory 106 may comprise other types of memory as well, or
combinations thereof. A human user may interact with the
computing device 102 through a visual display device 114

20

25

30

35

40

45

55

8

such as a computer monitor, which may include a graphical
user interface (GUI). The computing device 102 may include
other I/O devices such a keyboard 110 and a pointing device
112, for example a mouse, for receiving input from a user.
Optionally, the keyboard 110 and the pointing device 112
may be connected to the visual display device 114. The com-
puting device 102 may include other suitable conventional
1/O peripherals. The computing device 102 may support any
suitable installation medium 116, a CD-ROM, floppy disks,
tape device, USB device, hard-drive or any other device suit-
able for installing software programs such as software han-
dling the distribution of chemical and biological process
simulations of the present invention (hereinafter referred to as
simulation distribution software 120). The computing device
102 may further comprise a storage device 108, such as a
hard-drive or CD-ROM, for storing an operating system and
other related software, and for storing application software
programs such as simulation distribution software 120 of the
present invention.

Additionally, the computing device 102 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 118 to any type
of network capable of communication and performing the
operations described herein. Moreover, the computing device
102 may be any computer system such as a workstation,
desktop computer, server, laptop, handheld computer or other
form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein.

FIG. 1A depicts simulation distribution software 120 of the
present invention running in a stand-alone system configura-
tion of a single computing device 102. FIG. 1B depicts
another environment suitable for practicing an illustrative
embodiment of the present invention, where functionality is
distributed across multiple computing devices (102', 102"
and 102™). In a broad overview, the system 100 depicts a
multiple-tier or n-tier networked computer system for per-
forming distributed software applications such as the distrib-
uted technical computing environment of the present inven-
tion. The system 100 includes a client 150 (e.g., a first
computing device 102') in communications through a net-
work communication channel 130 with a server computer
160, also known as a server, (e.g., a second computing device
102") over a network 140 and the server in communications
through a network communications channel 130 with a work-
station (e.g., a third computing device 102"") over the network
140". The client 150, the server 160, and the workstation 170
can be connected 130 to the networks 140 and/or 140' through
avariety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. Each of the client 150, server 160 and
workstation 170 can be any type of computing device (102',
102" and 102") as described above and respectively config-
ured to be capable of computing and communicating the
operations described herein.

US 9,183,347 B1

9

In one embodiment, each of the client 150, server 160 and
workstation 170 are configured to and capable of providing at
least a portion simulation distribution of the present inven-
tion. As a distributed system, there are one or more software
components that run on each of the client 150, server 160 and
workstation 170, respectively, and work in communication
and in collaboration with each other to meet the functionality
of the overall application. For example, the client 150 may
hold a graphical modeling environment that is capable of
specifying block diagram models and technical computing
tasks to analyze the model. The client 150 may have software
components configured to and capable of submitting the tasks
to the server 160. The server 160 may have software compo-
nents configured to and capable of receiving the tasks sub-
mitted by the client 150 and for determining a workstation
170 to assign the task for technical computing. The worksta-
tion 170 may hold software components capable of providing
a technical computing environment to perform technical
computing of the tasks assigned from the server 160 and
submitted by the client 150. In summary, the technical com-
puting environment and software components may be
deployed across one or more different computing devices in
various network topologies and configurations.

FIG. 2A depicts an illustrative embodiment of a system of
the present invention. In brief overview, the system 200 in this
embodiment is a two-node distributed system comprising a
technical computing client application 250, or technical com-
puting client, running on a client 150 computer and a techni-
cal computing worker application 270, or technical comput-
ing worker, running on a workstation 170. The technical
computing client 250 is in communications with the technical
computing worker 170 through a network communications
channel 130 over a network 140.

The technical computing client 250 can be a technical
computing software application that provides a technical
computing and graphical modeling environment for generat-
ing block diagram models and to define mathematical algo-
rithms for simulating models of biological and chemical pro-
cesses. The technical computing client 250 may include all or
a portion of the functionality provided by the standalone
desktop application of MATLAB®. One ordinarily skilled in
the art will appreciate the various combinations of client types
that may access the functionality of the system.

With an application programming interface and/or pro-
gramming language of the technical computing client 250,
functions can be defined representing a biological or chemi-
cal process to be executed by either a technical computing
environment local to the client computer 150, or remote on
the workstation 270. The local technical computing environ-
ment may be part of the technical computing client 250, or a
technical computing worker running on the client computer
150. The programming language includes mechanisms,
described below in more detail, to define a task to be distrib-
uted to a technical computing environment and to communi-
cate the task to the technical computing worker 270 on the
workstation 170, or alternatively, on the client 150.

The distributed functionality features of the client 250
allows the technical computing client 250 to use the comput-
ing resources that may be available from a technical comput-
ing worker 270 on the workstation 170 to perform simulation
of a biological or chemical reaction. This frees up the tech-
nical computing client 250 to perform other tasks, or the
client computer 150 to execute other software applications.

The technical computing worker 270 of the system 200 can
be a technical computing software application that provides a
technical computing environment for performing technical
computing of tasks, such as those tasks defined or created by

20

40

45

10

the technical computing client 250. The technical computing
worker 270 can be an application, module, service, software
component, or a session, which includes support for technical
computing of functions defined in the programming language
of MATLAB®. A session is an instance of'a running technical
computing worker 270 by which a technical computing client
can connect and access its functionality. The technical com-
puting worker 270 can include all the functionality and soft-
ware components of the technical computing client 250, or it
can just include those software components it may need to
perform technical computing of tasks it receives for execu-
tion. The technical computing worker 270 may be configured
to and capable of running any of the modules, libraries or
software components of the MATLAB® product family. As
such, the technical computing worker 270 may have all or a
portion of the software components of MATLLAB® installed
onthe workstation 170, or alternatively, accessible on another
system in the network 140. The technical computing worker
270 has mechanisms, described in detail later, to receive a
task distributed from the technical computing client 250. The
technical computing worker 270 is capable of performing the
task as if the technical computing client 250 was performing
the task in its own technical computing environment. The
technical computing worker 270 also has mechanisms, to
return a result generated by the execution of the task to the
technical computing client 250.

Thetechnical computing worker 270 can be available on an
as needed basis to the technical computing client 250. When
not performing technical computing of tasks from the tech-
nical computing client 250, the workstation 170 of the tech-
nical computing worker 270 can be executing other software
programs, or the technical computing worker 270 can per-
form execution of tasks from other technical computing cli-
ents.

FIG. 2B shows another illustrative embodiment of the sys-
tem of the present invention in a multi-tier distributed com-
puter system as depicted in FIG. 2B. The multi-tier distrib-
uted system 205 includes a technical computing client 250
running on a client computer 150 in communications over a
network communication channel 130 to a server 160 on a
network 140. The server 160 comprises an automatic task
distribution mechanism 260 and a job manager 265. The job
manager 265 interfaces with the automatic task distribution
mechanism 260 on the server 160. The automatic task distri-
bution mechanism 260 communicates over a network com-
munication channel 130 on the network 140 to the technical
computing worker 270 on the workstation 170.

The automatic task distribution mechanism 260 comprises
one or more application software components to provide for
the automatic distribution of tasks from the technical com-
puting client 250 to the technical computing worker 270. The
automatic task distribution mechanism 260 allows the tech-
nical computing client 250 to delegate the management of
task distribution to the automatic task distribution mechanism
260. For example, a task can be defined and submitted to the
automatic task distribution mechanism 260 without specify-
ing which technical computing worker 270 is to perform the
technical computing of the task. The technical computing
client 250 does not need to know the specifics of the technical
computing worker 270. The technical computing client can
define a function to submit the task to the automatic task
distribution mechanism 260, and get a result of the task from
the automatic task distribution mechanism 260. As such, the
automatic task distribution mechanism provides a level of
indirection between the technical computing client 250 and
the technical computing worker 270.

US 9,183,347 B1

11

This eases the distributed programming and integration
burden on the technical computing client 250. The technical
computing client 250 does not need to have prior knowledge
of'the availability of the technical computing worker 270. For
multiple task submissions from the technical computing cli-
ent 250, the automatic task distribution mechanism 260 can
manage and handle the delegations of the tasks to the same
technical computing worker 270, or to other technical com-
puting workers, e.g., 270 and 270", and hold the results of the
tasks on behalf of the technical computing client 250 for
retrieval after the completion of technical computing ofall the
distributed tasks.

As part of the system, a job manager module 265, or “job
manager”, is included as an interface to the task and result
management functionality of the automatic task distribution
mechanism 260. The job manager 265 can comprise an
object-oriented interface to provide control of delegating
tasks and obtaining results in the multi-tiered distributed sys-
tem 205. The job manager 265 provides a level of program-
ming and integration abstraction above the details of inter-
process communications and workflow between the
automatic task distribution mechanism 260 and the technical
computing worker 270. The job manager 265 also provides an
interface for managing a group oftasks collectively as a single
unit called ajob, and on behalf ofa technical computing client
250, submitting those tasks making up the job, and obtaining
the results of each of the tasks until the job is completed.
Alternatively, the automatic task distribution mechanism 260
can include the functionality and object-oriented interface of
the job manager 265, or the automatic task distribution
mechanism 260 and the job manager 265 can be combined
into a single application, or software component. In an exem-
plary embodiment, the job manager 265 comprises both the
functionality of the job manager 265 and the automatic task
distribution mechanism 260. One ordinarily skilled in the art
will recognize the functions and operations of the job man-
ager 265 and the automatic task distribution mechanism 260
can be combined in various software components, applica-
tions and interfaces.

Referring now to FIG. 2C, an exemplary embodiment of
the present invention is shown with multiple technical com-
puting workers 270A-270N hosted on a plurality of worksta-
tions 170A-170N. The technical computing client 250 may be
in communication through the network communication chan-
nel 130 on the network 140 with one, some or all of the
technical computing workers 270A-270N. In a similar man-
ner, the automatic task distribution mechanism 260 may be in
communication through the network communication channel
130 on the network 140 with one, some or all of the technical
computing workers 270A-270N. As such, the technical com-
puting client 250 and/or the automatic task distribution
mechanism 260 can distribute tasks to multiple technical
computing workers 270A-270N to scale the distributed sys-
tem and increase computation time of tasks. As also shown in
FIG. 2C, the technical computing workers 270A-270B can be
hosted on the same workstation 170A, or a single technical
computing worker 270C can have a dedicated workstation
170B. Alternatively, one or more of the technical computing
workers 270A-270N can be hosted on either the client 150 or
the server 160.

The computing devices (102, 102', 102", 102") depicted in
FIGS. 1A and 1B can be running any operating system such
as any of the versions of the Microsoft® Windows operating
systems, the different releases of the Unix and Linux operat-
ing systems, any version of the MacOS® for Macintosh com-
puters, any embedded operating system, any real-time oper-
ating system, any open source operating system, any

30

40

45

60

12

proprietary operating system, any operating systems for
mobile computing devices, or any other operating system
capable of running on the computing device and performing
the operations described herein. Furthermore, the software
components can be capable of and configured to operate on
the operating system that may be running on any of the
computing device (e.g., 102,102', 102", 102"). Additionally,
each of the client 150, the server 160 and the workstation 170
can be running the same or different operating systems. One
ordinarily skilled in the art will recognize the various combi-
nations of operating systems and processors that can be run-
ning on any of the computing devices (102, 102', 102", and
102™).

Although the present invention is discussed above in terms
of distributing software components across the computing
devices of a client 150, server 160 and workstation 170, any
other system and/or deployment architecture that combines
and/or distributes one or more of the technical computing
client 250, job manager 265, automatic task distribution
mechanism 260 and technical computing worker 270 across
any other computing devices and operating systems available
in the network 140 may be used. Alternatively, all the soft-
ware components can run on a single computing device 102,
such as the client 150, server 160 or the workstation 170.

The system of the present invention provides flexibility in
methods of task distribution with multiple modes of opera-
tion. In FIGS. 3A, 3B and 3C, three modes of task distribution
of Simulation distribution software are shown. FIG. 3A
depicts a direct distribution mode, FIG. 3B, an automated
distribution mode and FIG. 3C, a batch mode of automated
distribution. Additionally, FIG. 3D depicts an exemplary
embodiment of the batch mode of automated distribution.

The direct distribution system 305 of FIG. 3A is intended
for those users who desire a high level of control over which
technical computing worker 270A-270N executes a particu-
lar task. In brief overview of the direct distribution system
305, the technical computing client 250 is in communications
with a plurality of technical computing workers, 270A-270N,
each running on their own workstation 170A-170N. In an
alternative embodiment, one or more of these technical com-
puting workers 270A-270N can be running on the same com-
puting device, e.g., workstation 270A, or on the client 150 or
the server 160. This direct distribution system 305 allows a
task to be sent to a particular technical computing worker,
e.g., technical computing worker 270A of a plurality of tech-
nical computing workers 270A-270N. Then, the technical
computing client 250 can continue with other work while the
specified technical computing worker, e.g., technical comput-
ing worker 270A, is performing technical computing of the
submitted task. Some time after submitting the task to the
technical computing worker 270A, the technical computing
client 250 can then obtain the result of the task from the
technical computing worker 270A. Furthermore, each tech-
nical computing worker 270N can process multiple tasks,
e.g., TaskN-M, and for each task produce a result, e.g.,
ResultN-M.

Alternatively, the technical computing worker 270A may
perform technical computing of a task without returning a
result, or may return information acknowledging completion
of the task. This mode of task distribution is useful for a
computer network with a relatively small number of known
workstations 170A-170N and technical computing workers
270A-270N. A task can be delegated to a specified technical
computing worker running 270A on a workstation 170A that
has a higher speed configuration than the other workstations

US 9,183,347 B1

13

170B-170N. For example, a longer task could be executed on
such a workstation 170A in order to speed the overall com-
putation time.

As further depicted in FIG. 3A, the technical computing
client 250 of the direct distribution system 305 can submit
multiple tasks (e.g., TaskN-M) to each of the multiple tech-
nical computing workers 270A-270N. For example, the tech-
nical computing client 250 submits task 1 to technical com-
puting worker 270A, submits task 2 to technical computing
worker 270B, and submits task N to technical computing
worker 270N. The technical computing client 250 can submit
taskl, task2 and taskN-M one immediately after another or
within a certain time between each other. As such, the tech-
nical computing workers 270A-270N can be performing
technical computing of their respective tasks independently
and in parallel to each other. Alternatively, the technical com-
puting workers 270A-270N may perform technical comput-
ing of their respective task while the other technical comput-
ing workers are idle.

In another embodiment, the technical computing workers
270A-270N may include interfaces and communication
channels to interact with each other as depicted by the phan-
tom arrowed lines between the technical computing workers
270A-270N in FIG. 3A. In such an embodiment, technical
computing worker 270A may perform a portion of technical
computing on task1, and then submit taskl1, and optionally,
any generated result or other data, for further technical com-
puting by technical computing worker 270B. Also, the tech-
nical computing worker 270A may also submit the result of
its technical computing of task1 to the technical computing
client 250, before or after, submitting the task to technical
computing worker 270B for further processing. Technical
computing worker 270B may in turn perform technical com-
puting of taskl, and subsequently submit taskl for further
processing by technical computing worker 270N. For addi-
tional configurability, the technical computing workers
270A-270N can obtain information with the task about the
identification of other technical computing workers 270A-
270N in the system. This information would be used to com-
municate and interact with another technical computing
worker. Alternatively, a technical computing worker 270A
may find another technical computing worker 270B-270N by
making a function or system call, or a method call to a service
provider on the network 140. In such a configuration, techni-
cal computing workers 270A-270N can either execute tasks
independently and in parallel to each other, or also execute
tasks serially and subsequent to each other.

Referring now to FIG. 3B, the automated task distribution
mode embodied in system 310 is intended to provide a con-
figuration where the user does not want to control which
technical computing worker 270A-270N executes a particu-
lar task. In brief overview of the automated distribution mode
of system 310, a technical computing client 250 is in com-
munication with the automatic task distribution mechanism
260 running on the server 160. The automatic task distribu-
tion mechanism 260 is in communications with a plurality of
technical computing workers 270A-270N. Under this mode
of operation, the technical computing client 250 is not
required to have any specific knowledge of the technical
computing workers 270A-270N, e.g., the name of the work-
station running a technical computing worker 270A-270N, or
the availability of the technical computing worker 270A-
270N to perform technical computing of a task. In alternative
embodiments, it may have prior knowledge of all or a portion
of' the technical computing workers 270A-270N available on
the network. Even with knowledge of the name or availability
of technical computing workers 270A-270N on the network

35

40

45

50

55

60

65

14

140, the technical computing client 250 can choose not to
specify the name of a particular technical computing worker
to perform the task, and let the automated distribution mecha-
nism distribute the task to any available technical computing
worker 270A-270N.

In FIG. 3B, the technical computing client 250 submits one
or more tasks (Task1-TaskN-M) to the automatic task distri-
bution mechanism 260. These tasks can be submitted sequen-
tially or in an order and frequency as specified by the techni-
cal computing client 250. The automatic task distribution
mechanism 260 obtains the tasks (Task1-TaskN-M) to make
then available for distribution to any of the technical comput-
ing workers 270A-270N. A technical computing worker
270A-270N takes a task from the automatic task distribution
mechanism 260 for technical computing of the task, com-
putes a result for the task and provides the result to the
automatic task distribution mechanism 260. For example,
technical computing worker 270A takes task 1 from the auto-
matic task distribution mechanism 260, computes a result,
Result 1, for task 1, and submits Result 1 to the automatic task
distribution mechanism 260. The automatic task distribution
mechanism 260 makes the results (Resultl-ResultN-M)
available to the technical computing client 250 as they get
submitted from the technical computing worker 270A-270N
generating and submitting the respective result. At a time or
method determined by the technical computing client 250, the
technical computing client 250 obtains the results of the com-
puted tasks from the automatic task distribution mechanism
260. For example, the technical computing client 250 may
obtain all the results (Resultl-ResultN-M) at the same time
after all the results have been computed, or each result may be
obtained after it becomes available in the automatic task
distribution mechanism 260. Accordingly, the technical com-
puting client 250 can determine the order and frequency of
obtaining one or more of the results. As with the direct dis-
tribution mode, the technical computing workers 270A-270N
can also communicate and interact with each other, as
depicted by the phantom arrowed lines between the technical
computing workers 270A-270N in FIG. 3B, to execute tasks
both serially and in parallel by submitting a task to another
technical computing worker 270A-270N.

The batch mode of automated task distribution embodied
in system 315 of FIG. 3C is intended to provide a configura-
tion where the user can specify a group of related tasks as ajob
and provide the batch of tasks, or the job, to the automatic task
distribution mechanism 260. In brief overview of the batch
mode of the automatic distribution system 315, a technical
computing client 250 is in communication with the job man-
ager 265 on the server 160. The job manager 265 interfaces
and communicates with the automatic task distribution
mechanism 260 running on the same server 160. Each of the
technical computing workers 270A-270N is in communica-
tion with the automatic task distribution mechanism 260. A
job manager 265 interfaces with and is associated with one
automatic task distribution mechanism 260. Alternatively, the
job manager 265 and the automatic task distribution mecha-
nism could be on different servers, e.g., 160 and 160'. Addi-
tionally, a plurality of job managers and automatic task dis-
tribution mechanisms could be running on a single server 160
or each on their own server (160", 160", etc). Each of the
plurality of job managers interface with and are associated
with one of the plurality of automatic distribution mecha-
nisms. This allows the distributed system to scale the number
of'instances of the job manager 265 and the automatic distri-
bution mechanism 260 to handle additional multiple techni-
cal computing clients 250 distributing tasks.

US 9,183,347 B1

15

In batch mode as depicted in FIG. 3C, the technical com-
puting client 250 defines the job. The technical computing
client 250 has a programming language environment by
which it can declare tasks, declare a job and associate the
tasks with the job. Instead of submitting each task separately
as depicted in FIG. 3B, the technical computing client 250
submits the job containing all the associated tasks to the job
manager 265. The job manager 265 is a software component
that provides an object-oriented interface to the automatic
task distribution mechanism 260. The job manager 265
obtains the tasks from the job and provides the tasks to the
automatic task distribution mechanism 260 for technical
computing workers 270A-270N to take and compute results.
For example, technical computing client 250 associates a job,
Job1, with a set of three tasks: Taskl, Task2 and TaskN-M,
with a chemical process. The technical computing client 250
then submits Job1 to the job manager 265. The job manager
265 obtains Jobl and obtains each of the tasks, Taskl-
TaskN-M from Job 1. Then, according to the configured logic
of the job manager 265, described in more detail below, the
job manager 265 submits each of the tasks to the automatic
task distribution mechanism 260 for execution by a technical
computing worker 270A-270N. Technical computing worker
270A may take Taskl from the automatic task distribution
mechanism 260, compute a Resultl for Task1 and provide the
Resultl to the automatic task distribution mechanism 260.
Technical computing worker 270B and technical computing
worker 270N, in a similar fashion, compute and provide
results for Task2 and TaskN-M respectively. The job manager
265 then obtains the set of results for the completed job of
Jobl and provides the results of each of the tasks to the
technical computing client 250.

The job manager 265 further comprises a queue 267 for
arranging and handling submitted jobs. For example, the job
manager 265 may handle jobs in a first-in first-out (FIFO)
manner. [n this case, the job manager 265 does not process the
next job until all the tasks from the current job have been
processed by the automatic task distribution mechanism 260.
Additionally, the job manager 265 using the queue 267 sup-
ports handling multiple job submissions and task distribution
from multiple technical computing clients 250. If a first tech-
nical computing client 250 submits a job, Job1, the job man-
ager 265 places that job first in the queue 267. If a second
technical computing client, e.g., 250", submits a second Job,
for example, Job 2, the job manager places the job in the
queue behind the Job1 from the first client. In this manner, all
technical computing clients (250, 250', 250") accessing the
services of the job manager 265 get serviced for task distri-
bution. One ordinarily skilled in the art will recognize that the
job manager 265 could implement a variety of algorithms for
processing jobs in a job queue 267 and for handling multiple
technical computing clients (250, 250', 250"). For example, a
user may be able to specify a priority level for a specified job,
or the logic of the job manager 265 may make task distribut-
ing and processing decisions based on the configuration and
availability of technical computing workers 270A-270B to
determine a preferred or optimal selection of technical com-
puting of jobs and tasks.

As with the other distribution modes of FIG. 3A and FIG.
3B, the technical computing workers 270A-270N in batch
mode can also communicate and interact with each other as
shown by the phantom arrowed lines between technical com-
puting workers 270A-270N in FIG. 3C. This allows the tech-
nical computing workers 270A-270N to execute tasks both
serially and in parallel by submitting a task to another tech-
nical computing worker. As part of the information associated
with the task obtained by a technical computing worker or by

10

15

20

25

30

35

40

45

50

55

60

65

16

other means, such as a system or function call, or a method
call to a service, a technical computing worker 270A can
obtain information about the other technical computing
workers 270B-270N assigned to or working on tasks associ-
ated with a specific job, or available on the network 140.

The exemplary embodiment of the batch mode of auto-
mated task distribution system 320 of FIG. 3D depicts a
configuration where the job manager 265 contains the auto-
matic task distribution mechanism 260. In brief overview of
system 320, a technical computing client 250 is in commu-
nication with the job manager 265 on the server 160. The job
manager 265 comprises a task distribution mechanism 260
running as part of the job manager 265 on the same server
160. The job manager 265 further comprises a queue 267 for
arranging and handling submitted jobs. The technical com-
puting workers 270A-270N are in communication with the
job manager 265 to receive tasks from the automatic task
distribution mechanism 260 of the job manager 265.

In batch mode operation as depicted in FIG. 3D, the tech-
nical computing client 250 defines the job comprised of
related tasks. Instead of submitting each task separately as
depicted in FIG. 3B, the technical computing client 250 sub-
mits the job containing all the related tasks to the job manager
265. The job manager 265 obtains the tasks from the job and
submits the tasks, via an automatic task distribution mecha-
nism 260, to the technical computing workers 270A-270N to
perform technical computing. For example, technical com-
puting client 250 associates a job, Job1, having a set of three
tasks: Taskl, Task2 and TaskN-M; with a chemical reaction.
The technical computing client 250 then submits Job1 to the
job manager 265. The job manager 265 obtains Jobl and
obtains each of the tasks, Task1-TaskN-M, from Job 1. Then,
the automatic task distribution mechanism 260 of the job
manager 265 submits each of the tasks to a technical comput-
ing worker 270A-270N for execution. For example, the job
manager 265 may submit Task 1 to technical computing
worker 270A to compute and produce a Resultl for Taskl.
Technical computing worker 270A provides the Resultl to
the job manager 265. In a similar fashion, the job manager
265 may submit Task2 and TaskN-M to technical computing
worker 270B and technical computing worker 270N with
each technical computing worker 270A and 270B providing
the results for Task2 and TaskN-M respectively to the job
manager 265. When all the results from each of the tasks of
Job1l are received, the job manager 265 then provides the
results of each of the tasks of Job 1 to the technical computing
client 250. The result is then available for display or review by
a user on the technical computing client 250.

In the batch mode of operation of depicted in Figured 3C
and 3D, the job manager 265 or automatic task distribution
mechanism 260 can be configured to define the minimum and
maximum numbers of technical computing workers 270A-
270N to perform the tasks associated with a job. This feature
can be configured on a job by job basis. Alternatively, it may
be configured for a portion or all of the jobs. The configura-
tion of these settings can be facilitated through parameters
associated with a submitted job, such as in one or more
properties of a job object, or in one or more fields of a data
structure representing a job. Alternatively, these settings may
be facilitated through any interface of the job manager 265 or
automatic task distribution mechanism 260, such as in a con-
figuration file, graphical user interface, command or message
or any other means by which values for these settings may be
set.

The system (e.g. 315 or 320) can compare the number of
technical computing workers 270A-270N registered, or oth-
erwise available, with the job manager 265 or automatic task

US 9,183,347 B1

17

distribution mechanism 260 against the configured setting of
the minimum number of technical computing workers param-
eter. The system may not start a job unless there is a minimum
number of technical computing workers 270A-270N regis-
tered or available to work on the job. In a similar manner, the
system can check the number of available or registered tech-
nical computing workers 270A-270N against the setting of
the maximum number of technical computing workers
parameter. As the system distributes tasks of'a job, it can make
sure not to distribute tasks to more than the defined number of
technical computing workers 270A-270N. In some embodi-
ments, the minimum number of technical computing workers
will be set to a value equal to the setting of the maximum
number of technical computing workers. In such a case, the
system may only start the job if the minimum number of
technical computing workers 270A-270A are available or
registered to start the job, and may not use any more technical
computing workers 270A-270N than the minimum setting.
This is useful for cases where the user wants to configure a job
to have each task be assigned to and run on separate technical
computing workers 270A-270N. For example, ajob may have
5 tasks and the minimum and maximum technical computing
worker settings may be set to 5.

Additionally, in any of the embodiments depicted in FIGS.
3A-3D, the system can determine or select the technical com-
puter worker 270A-270N to work on a task by operational
and/or performance characteristics of the technical comput-
ing worker 270A-270N and/or workstation 170A-170N. For
example, a technical computing worker 270A may work on a
task based on the version of simulation software that is
installed on the workstation 170A or that the technical com-
puting worker 270A is capable of running. Additionally, the
technical computing worker 270A-270N and workstation
170A-170N may have a specification or profile, such as a
benchmark comparison results file, which provides a descrip-
tion of any operational and performance characteristics of the
version of software running on that specific computing device
102 of the workstation 170A. This profile can be in compari-
son to known benchmarks of operational and performance
characteristics of Simulation distribution software running on
certain computing devices (102, 102"), with specified ver-
sions of Simulation distribution software, operating systems
and other related software, or any other system component or
attribute that may impact the operation or performance of
simulation software. This profile may be described in a file
accessible over the network or retrievable through an inter-
face mechanism of the technical computing worker 270A-
270N. Furthermore, the system may determine the technical
computing worker 270A-270N to work on a task by any
configuration or properties set on the technical computing
worker 270A-270N or workstation 170A-170N. For deter-
mining a technical computing worker 270A-270N to work on
atask, the system may discover any configuration, properties,
and operational and performance characteristics of the simu-
lation software of a technical computing worker 270A-270N
running on a workstation 170A-170N through any interface
of the technical computing worker 270A-N or workstation
170A-170N, such as, for example, in a file, graphical user
interface, command or message.

The present invention also provides additional flexibility in
that the multiple modes of task distribution can be performed
concurrently in the distributed system. FIG. 4 is an illustrative
embodiment of the present invention showing the distributed
application performing, concurrently, the combination of the
modes of operation depicted in FIGS. 3A-3C. Additionally,
the distributed system 400 is depicted supporting multiple
clients 250A-250N communicating with multiple job man-

20

30

40

45

18

agers 265A-265N and multiple automatic task distribution
mechanisms 260A-260N. With these multiple modes of
operation, any technical computing client 250A-250N can
distribute tasks directly to a technical computing worker
270A-270N, submit tasks to the automatic task distribution
mechanism 260, or submit a job to the job manager 265. Inthe
depicted multi-client distributed system 400, a plurality of
technical computing clients 250A-250N are in communica-
tion with one or more job managers 265A-265N. The job
manager 265A can be a separate component interfacing to the
automatic task distribution mechanism 260A, or the job man-
ager 265N can be a single application comprising the func-
tionality of the automatic task distribution mechanism 260N.
The one or more technical computing workers 270A-270B
are in communication with the one or more job managers
265N or the one or more automatic task distribution mecha-
nisms 260A. The distributed architecture of the present inven-
tion allows for a scalable and flexible distributed technical
computing environment supporting a variety of deployments
and network topologies.

For example, as shown in FIG. 4, a technical computing
client 250 A can operate in both the direct distribution mode
and the batch automated distribution mode. As such, techni-
cal computing client 250A can submit a task to and receive a
result from the automatic task distribution mechanism 260A
without using the job manager 265A. In another instance,
technical computing client 250A can submit a job, Jobl, to
the job manager 265A for task distribution by the automatic
task distribution mechanism 260A to receive results from the
job, such as Job1Results. In another example of F1G. 4, tech-
nical computing client 250B can operate in batch automated
distribution mode but submit jobs separately to a first job
manager 265A running on a first server 160A and a second
job manager 265N running on a second server 160N. In yet
another example, technical computing client 250N operates
in both the automated distribution and direct distribution
modes. Technical computing client 250N submits a task,
Task2, to automatic task distribution mechanism 260N and
receives a result, Task2Result, from computing by a technical
computing worker 270A-270N assigned by the system 400.
Technical computing client 250N also directly submits a task
to technical computing worker 270N and receives a computed
result directly from the technical computing worker 270N.
One ordinarily skilled in the art will appreciate the various
combinations of deployments that can occur with such a
distributed system 400 with multiple modes of operation. As
such, the present invention offers scalability and flexibility
for distributed processing of complex technical computing
requirements.

In another aspect, the present invention relates to methods
for distributing the simulation of chemical or biological pro-
cesses or reactions to technical computing workers 270A-
270N for processing, either directly, or indirectly and auto-
matically, as described above in reference to the
embodiments depicted in FIGS.3A-3C.FIGS.5A, 5B and 5C
each show a flow diagram of the methods of the three modes
of distribution. FIG. 5A depicts the method of direct distri-
bution, FIG. 5B, the method of an automated distribution, and
FIG. 5C, a batch mode method of automated distribution.

Referring now to FIG. 5A, one embodiment of the method
500 to distribute a task from a technical computing client 250
to a technical computing worker 270 is illustrated. Method
500 is practiced with the direct distribution embodiment of
the invention depicted in FIG. 3A. On the technical comput-
ing client 250 a task is associated with a chemical reaction to
be simulated (step 502). The task defines a function, com-
mand or operation, such as may be available in the program-

US 9,183,347 B1

19

ming language of MATLAB®, and the number of arguments
and input data of the arguments. The technical computing
client 250 then submits the task (step 504) to the technical
computing worker 270. The technical computing worker 270
receives the task (step 506) and performs the requested tech-
nical computing as defined by the task (step 508). In perform-
ing the technical computing on the task, an associated result
may be generated (step 510). In alternative embodiments,
either no result is generated, or no result is required to be
returned to the technical computing client 250. After gener-
ating the result of the task, the technical computing worker
270 provides the result (step 512) to the technical computing
client 250, and the technical computing client 250 obtains the
result from the technical computing worker 270 (step 514).

Referring now to FIG. 5B, an embodiment of the method
525 of simulating a chemical process or reaction in a distrib-
uted technical computing environment is illustrated. Method
525 is practiced with the automatic task distribution embodi-
ment of the invention depicted in FIG. 3B. A technical com-
puting worker 270 registers to receive notification of one or
more tasks (step 527) becoming available, or appearing, in the
automatic task distribution mechanism 260. On the technical
computing client 250 a task is associated with a chemical
process or reaction to be simulated (step 502). The technical
computing client 250 then submits the task (step 530) to the
automatic task distribution mechanism 260. The automatic
task distribution mechanism 260 receives the task and makes
the task available for distribution (step 532) to a technical
computing worker 270. The technical computing client reg-
isters (step 534) with the automatic task distribution mecha-
nism 260 to receive notification when a result associated with
the task submitted in step 530 is available, or appears, in the
automatic task distribution mechanism 260. The automatic
task distribution mechanism 260 registers the technical com-
puting client 250 for notification when the result appears (step
536). The automatic task distribution mechanism 260 pro-
vides notification (step 538) to the technical computing
worker 260 of the availability of the task. In response to
receiving the notification (step 540), the technical computing
worker obtains (step 544) the task provided (step 540) from
the automatic task distribution mechanism 260. The technical
computing worker 270 performs the task (step 508). In per-
forming the task, an associated result may be generated (step
510). In alternative embodiments, either no result is generated
or the result is not required to be returned to the technical
computing client 250. After generating the result from com-
puting the task (step 510), the technical computing worker
270 provides the result (step 512) to the automatic task dis-
tribution mechanism 260. After obtaining the result from the
technical computing worker 250 (step 550), the automatic
task distribution mechanism 260 notifies (step 552) the tech-
nical computing client 250 that the result is available. The
technical computing client 250 obtains (step 556) the result
provided (step 558) by the automatic task distribution mecha-
nism 260.

Referring now to FIGS. 5C and 5D, one embodiment of the
method 560 to distribute a task from a technical computing
client 250 to a technical computing worker 270 in a batch
mode of operation is illustrated. Method 560 is practiced with
the batch mode of the automatic task distribution system (e.g.
315 or 320). A technical computing worker 270 registers to
receive notification of one or more tasks (step 527) becoming
available, or appearing, in the automatic task distribution
mechanism 260. In an exemplary embodiment, the technical
computing worker registers to receive a task from the job
manager 265 or automatic task distribution mechanism 260
as notification to perform computing on the task. On the

10

20

25

30

35

40

45

50

55

60

65

20

technical computing client 250 one or more tasks are associ-
ated with a chemical reaction to be simulated (step 562). The
technical computing client 250 groups one or more tasks of
the tasks into ajob associated with the chemical reaction to be
simulated (step 564). The technical computing client 250 then
submits the job (step 566) to the job manager 265. The job
manager 265 obtains the job (step 568) from the technical
computing client 250 and provides the one or more tasks of
the job (step 570) to the automatic task distribution mecha-
nism 260, which makes the one or more tasks available for
distribution (step 572) to one or more technical computing
workers 270A-270N. In an exemplary embodiment, the job
manager 265 or the automatic task distribution mechanism
260 may submit the one or more tasks to the one or more
technical computing workers 270A-270N. In another
embodiment, the technical computing worker 270 may take
the task from the job manager 265 or the automatic task
distribution mechanism 260.

The technical computing client 250 registers (step 574) a
callback function with the job manager 265. The technical
computing client 250 may setup and/or register other callback
functions based on changes in the state of processing of a task
or job, or changes in the state of the job manager, or other
events available to trigger the calling of a function. The job
manager 265 calls this function when the job is completed,
i.e., when each of the one or more tasks of the job have been
completed. In turn, the job manager 265 may register (step
576) with the automatic task distribution mechanism 260 to
receive notification of the results of the submitted tasks
appearing in the automatic task distribution mechanism 260,
or being received from the technical computing worker
270A-270N. In one embodiment, the automatic task distribu-
tion mechanism 260 registers the notification request of the
job manager (step 578). Then, the automatic task distribution
mechanism 260 provides notification to the technical com-
puting worker 270 of the availability of the task (step 538). In
an exemplary embodiment, the task is sent, by the job man-
ager 265 to the technical computing worker 270 as notifica-
tion to perform the task. In response to receiving the notifi-
cation or the task (step 540), the technical computing worker
270 obtains (step 542) the task provided (step 540) from the
automatic task distribution mechanism 260 or the job man-
ager 265. The technical computing worker 270 executes the
task (step 508). In executing the task, an associated result may
be generated (step 510). In alternative embodiments, either no
result is generated or the result is not required to be returned
to the technical computing client 250. After generating the
result from computing the task (step 510), the technical com-
puting worker 270 provides the result (step 510) to the auto-
matic task distribution mechanism 260 or the job manager
265. After obtaining the result from the technical computing
worker 250 (step 550), the automatic task distribution mecha-
nism 260 notifies (step 587) the job manager 265 that the
result is available. In an exemplary embodiment, the job
manager 265 receives the results from the technical comput-
ing worker 270. In response to receiving the notification or the
result (step 589), the job manager 265 obtains the result (step
591) provided by (step 593) the automatic task distribution
mechanism 260. If the job manager 265 received the last
result of the job, the job manager 265 will notify the technical
computing client 250 that the job is completed via the regis-
tered callback function (step 595). After triggering the com-
pleted job callback function (step 597), the technical comput-
ing client 250 obtains (step 598) the result provided (step 599)
by the job manager 265.

With the methods of simulation distribution described
above (methods 500, 525, and 560) in view of the embodi-

US 9,183,347 B1

21

ment of the concurrent multiple distribution modes of opera-
tion depicted in system 400 of FIG. 4, one ordinarily skilled in
the art will recognize the application of the above methods to
the multiple modes of operation for each technical computing
client 250A-250N in FIG. 4.

In similar fashion, biological systems having multiple
chemical reactions can be simulated by, on the technical
computing client 250, associating a job with the biological
system to be simulated. The job comprises multiple tasks
associated with the chemical reactions of the biological sys-
tem. The technical computing client 250 then submits the job
to the job manager 265. The job manager 265 obtains the job
from the technical computing client 250 and provides the one
or more tasks of the job to the automatic task distribution
mechanism 260, which makes the one or more tasks available
for distribution to one or more technical computing workers
270A-270N.

In certain embodiments, a user may model a chemical
reaction using a graphical user interface (GUI). An example
of this can be seen in FIGS. 6A and 6B. FIGS. 6A and 6B
depict an embodiment of a tabular graphical user interface
600 that may be used to receive input manufactured by a user
for creating a model. As shown in FIGS. 6A and 6B, the user
interface may include a model pane 602. In the embodiment
shown in FIGS. 6A and 6B, the model pane 602 lists one or
more models in a tree structure familiar to users of computers
operating under control of an operating system, such as the
WINDOW operating system manufactured by Microsoft
Corp. of Redmond, Wash., or another suitable operating sys-
tem using graphical controls. In the particular embodiment
depicted by FIG. 6A, a single model of a chemical reaction is
contained in the model pane 602, indicated by the folder
labeled “FieldKorosNoyesModel”. That model contains
three subfolders: “Compartments”; “Reactions™; and “Spe-
cies”. The subfolders represent pieces of the modeled reac-
tion. Other graphical user interface schemes may be used to
present this information to the user. In some embodiments,
the model pane 602 may display a number of folders repre-
senting models. User selection of a particular folder causes
the system to display folder in the model pane 602 that rep-
resent pieces of the reaction, e.g., compartments, reactions,
and species. In still other embodiments, each model and all
components of all models may be displayed in the model pane
602 and each model may be associated with a “radio button.”
Selection of the radio button associates with a model causes
that model and its constituents to be actively displayed. In
some of these embodiments, unselected models are displayed
in grey type, or may have a transparent grey overlay indicat-
ing that they are not currently the active model.

The illustrative graphical user interface 600 also includes a
reaction table 610, and a species table 620. The reaction table
610 is associated with the “Reactions” folder displayed in the
model pane 602. Similarly, the species table 620 is associated
with the “Species” folder displayed in the model pane 602. In
some embodiments, collapsing the associated folder causes
the table to not be displayed. The respective tables may be
displayed in their own graphical user interface window, rather
than in the same window as the graphical user interface 600,
as shown in FIG. 6A.

The reaction table 610 lists each reaction present in a
modeled biological process or chemical reaction. In the
embodiment shown in FIG. 6A, the modeling environment
600 displays reactions present in the Field-Koros-Noyes
model of the Belousov-Zhabotinsky reaction and includes
four columns: a reaction column 612, a kinetic law column
614, a parameter column 616, and a reversible column 618.
Each row of'the reaction table 610 corresponds to a particular

10

15

20

25

30

35

40

45

50

55

60

65

22

reaction. The number and format of columns displayed by the
reaction table may be selected by the user. In other embodi-
ments, the number and format of columns to be displayed
may be based on the type of reaction selected by the user.

The reaction column 612 displays a reaction represented in
an abstract format, e.g., Ce—Br. In other embodiments, the
reaction may be represented as a differential equation, in
stochastic format, or as a hybrid of two or more of these
formats. In some embodiments, the reaction table includes a
column identifying modifiers of the reaction. For example,
some reactions can be catalyzed by a substance. This may be
represented in the tabular format as Ce-m(s)—Br, meaning
that the presence of the species “s” accelerates the conversion
of Ce into Br.

In the embodiment shown in FIG. 6A, the reaction table
610 also includes a kinetic law column 614 which identifies
the kinetic law expression the identified reaction follows. In
the embodiment shown in FIG. 6A, the kinetic law associated
with the Ce—Br reaction is “Ce*kS5,” meaning that Ce is
consumed at a rate controlled by the parameter “k5” and the
amount of Ce present. In the embodiment shown in FIG. 6A,
the parameters for the kinetic law expression are listed in the
parameter column 616. In some embodiments, the reaction
table 610 includes a column identifying the name of the
kinetic law associated with a particular reaction, e.g. “mass
action” or “Michaels-Menten.” In other embodiments, the
reaction table 610 includes a column identifying the units in
which the kinetic law parameters are expressed, e.g., 1/sec-
onds, 1/(moles*seconds), etc.

Still referring to the embodiment shown in FIG. 6A, the
reaction table 610 includes a reversible column 618, which
indicates whether the associated reaction is reversible. A
reversible reaction is one which occurs in either direction, i.e.
Ce <-> Br. In some embodiments the reaction table 610 may
include a column identifying dynamics of the reaction, e.g.,
“fast” or “slow.” In some of these embodiments, the rapidity
with which a reaction occurs is identified on a scale of 1 to 10.
In still other embodiments, the user may be presented with a
slide control that allows the rapidity of various reactions to be
set relative to one another. In still further embodiments, the
reaction table 610 may include a column for annotations or
notes relating to the reaction.

The modeling environment 600 shown in FIG. 6A also
displays a species table 620. In the embodiment shown in
FIG. 6A, the species table 620 includes a name column 622,
an initial amount column 624, and a constant column 626.
The species table depicts the initial conditions and amounts of
material used in the modeled biological process or chemical
reaction. Thus, in the embodiment shown in FIG. 6A, the
modeled biological process begins with 0.003 molar units of
bromine, i.e., 0.003 multiplied by Avrogado’s number. The
constant column 626 is set to “true” if the model should
assume that there is an infinite supply of a particular species.
In other embodiments the species table 620 includes other
columns such as a column identifying units (e.g., moles,
molecules, liters, etc.), whether a particular species is an
independent variable in the model (i.e., whether the species is
an input to the system), a column for annotations, or a column
for notes.

FIG. 6B depicts in tabular form reactions for simulating the
E. Coliheat shock response model according to an illustrative
embodiment of the invention. As described above in connec-
tion with FIG. 6A, the upper table displays the various reac-
tions involved in transcription and translation of the heat
shock proteins as well as the interactions of heat shock pro-
teins with unfolded (or denatured) proteins. As depicted in
FIG. 6B, all reactions in the E. Coli heat shock response

US 9,183,347 B1

23

model have mass action kinetics and some are reversible,
while some are not. Another method of representing chemical
or biochemical reactions is by way of a block diagram.

In still other embodiments, the modeling environment 600
allows a user to represent a biological process or chemical
reaction as a block diagram. FIG. 7 depicts an embodiment of
a block diagram modeling environment. In the embodiment
depicted in FIG. 7, a block diagram showing heat shock
reaction in E. Coli bacteria is under construction. As is well
known, heat shock response in E. coli is a protective cellular
response to heat-induced stress. Elevated temperatures result
indecreased E. coli growth, in large part, from protein unfold-
ing or misfolding. The heat shock response, via heat shock
proteins, responds to heat induced stress by refolding proteins
via chaperones or by degrading nonfunctional proteins via
proteases.

The block diagram shown in FIG. 7 depicts the expression
of five particular gene sequences involved in the heat shock
response. In part, FIG. 7 depicts pathways 7100, 7200, 7300
for the expression of proteases involved in heat shock
response. Pathways 7100, 7200, 7300 represent the expres-
sion of heat shock proteins ftsH, Hs1VU and other proteases,
respectively. The pathways 7100, 7200, 7300 are activated by
the interaction 7105, 7205, 7305 of o2 with RNA polymerase
at the promoter of the respective sequence. Each pathway
7100, 7200, 7300 depicts the transcription 7120, 7220, 7320
of the mRNA mediated 7110, 7210, 7310 by the o> and RNA
polymerase interaction 7105, 7205, 7305 at the promoter and
the subsequent translation 7130, 7230, 7330 of the protease.
The heat shock proteases, including ftsHand Hs1VU, serveto
degrade proteins rendered nonfunctional by heat stress. Simi-
larly, the diagram depicts the pathways 7400, 7500 involved
in the expression of the heat shock proteins ¢7° and DnakK,
respectively. The expression of the o™ protein is activated
7410 by the interaction 7403 of 0”° and RNA polymerase at
the promoter. The o™ mRNA is transcribed 7420 and, subse-
quently, o> is translated 7430. In a closely related pathway
7500, the heat shock protein DnaK is translated. The interac-
tion 7505 of 0> and RNA polymerase at the promoter acti-
vate 4510 the transcription 4520 of DnaK mRNA and, sub-
sequently, the translation 7530 of DnaK. Dnak, in turn, may
either interact 4600 with o°2 so as to stabilize o> or, alterna-
tively, may refold 7700 the proteins unfolded by heat stress.

A block diagram editor allows users to perform such
actions as draw, edit, annotate, save, and print out block
diagram representations of dynamic systems. Blocks are the
fundamental mathematical elements of a classic block dia-
gram model. In some of these embodiments, the modeling
environment includes two classes of blocks, non-virtual
blocks and virtual blocks. Non-virtual blocks are elementary
dynamic systems, such as the o> and RNA polymerase inter-
action 7105, 7205, 7305. A virtual block may be provided for
graphical organizational convenience and plays no role in the
definition of the system of equations described by the block
diagram model. For example, in the block diagram of the heat
shock mechanism in E. Co/i bacteria depicted in FIG. 7, gene
transcription mediated by 032 to produce proteins, repre-
sented by 7100, 7200, and 7300, may be represented as a
single, virtual block. In this case the virtual block adds hier-
archy to a model for the purpose of improving the readability
of models.

The block diagram editor is generally a graphical user
interface (GUI) component that allows drafting of block dia-
gram models representing a chemical or biochemical reaction
by a user. FIG. 7 depicts an embodiment of a GUI for a block
diagram editor that features a floating element palette. In the
embodiment shown in FIG. 7, the GUI tools include various

20

30

35

40

45

50

24

block tools 702, 704, 708, various wiring line connection
tools 706, 712, an annotation tool 716, formatting tool 710, a
save/load tool 714, a notification tool 720 and a publishing
tool 718. The block tools 702, 704, 708 represent a library of
all the pre-defined blocks available to the user when building
the block diagram. Individual users may be able to customize
this palette to: (a) reorganize blocks in some custom format,
(b) delete blocks they do not use, and (c¢) add custom blocks
they have designed. The blocks may be dragged through some
human-machine interface (such as a mouse orkeyboard) onto
the window (i.e., model canvas). The graphical version of the
block that is rendered on the canvas is called the icon for the
block. There may be different embodiments for the block
palette including a tree-based browser view of all of the
blocks. In these embodiments, the floating element palette
allows a user to drag block diagram elements from a palette
and drop it in place on the screen. In some of these embodi-
ments, there may also be a textual interface with a set of
commands that allow interaction with the graphical editor.
For example, dragging a polymerase block to the model may
cause the system to prompt the user for the protein to be used
in the polymerase reaction.

As one can see from FIGS. 6A, 6B, and 7 a model of a
biological or chemical reaction, such as the heat shock
response in £. Coli bacteria, can involve several reactions or
processes. The simulation of these reactions can be expedited
by divided them up into tasks, grouping the tasks into jobs and
providing the jobs for distribution and execution on a distrib-
uted system.

FIG. 8 depicts an exemplary embodiment of details of the
batch mode of operation of the present invention using a
database. In this embodiment, the job manager 265 includes
the functionality of the automatic task distribution mecha-
nism 260. In brief overview, the technical computing client
250 is in communication with the job manager 265, which is
in communication with the technical computing worker 270.
The job manager comprises a job queue 267, an automatic
task distribution mechanism 260, a job runner 867, a worker
pool 868 and a database 869. Any of these components of the
job manager 265 can be a separate library, interface, software
component or application. In an exemplary embodiment,
these components can be running in their own processing
thread to provide multi-tasking capabilities.

The worker pool 868 contains a list of technical computing
workers 270A-270N that are available to work on a task.
These technical computing workers 270A-270N may on star-
tup register with a job manager 265. The name of the job
manager 265 the technical computing worker 270A-270N is
associated with may be configurable by an interface of the
technical computing worker 270A-270N, or by a command
line startup parameter, or an external configuration or regis-
tration file. The worker pool 868 may keep a list of “good”
technical computing workers 270A-270N, or those workers
to which the job manager 265 can communicate with and can
determine has such a status to be available for processing
tasks. The job manager 265 can update the worker pool 867
by going through the list of technical computing workers
270A-270N registered in the worker pool 867 and sending
communications to each of the technical computing workers
270A-270N to determine their status and if they are available.
Accordingly, the worker pool 867 can be updated to deter-
mine the current set of technical computing workers 867
available, or otherwise able to receive tasks from the job
manager 265.

The job runner 867 is responsible for determining the next
task to work on and for submitting the task to a technical
computing worker 270A-270N. The job runner 867 works

US 9,183,347 B1

25

with the job queue 267 and takes the next task for processing
from a job in the job queue 267. The job runner 867 obtains
from the worker pool 868 a name of or reference to a technical
computing worker 270A-270N and submits the task for pro-
cessing to the obtained technical computing worker 270A-
270N. The job runner 867 may be configured to have business
rulelogic to determine the next task to take from the job queue
either in a FIFO manner supported by the job queue 267 or
any other manner based on priority, availability, task and job
option settings, user configuration, etc. The job runner 867 in
conjunction with the worker pool 868 and the job queue 267
can form a portion of or all of the functionality of the auto-
matic task distribution mechanism 260. The job runner 867
can have such logic to determine from the worker pool 868
which technical computing worker 270A-270N should be
assigned and sent a task from the job queue 267. Alternatively,
a separate automatic task distribution mechanism 260 can be
responsible for determining the technical computing worker
270A-270N to be assigned a task and to send the task to the
assigned technical computing worker 270A-270N. In any of
these embodiments, the technical computing worker 250 does
not need to know the identity, such as via a hostname or an
interne protocol address, of the technical computing worker
270A-270N assigned to perform technical computing on a
task.

The job manager 265 also has a database 869 for storing
and retrieving job manager, job and task objects and data, or
other objects and data to support the operations described
herein. For example, jobs in the job queue 267, the list of
workers of the worker pool 868, the tasks of any jobs inthe job
queue 267, the properties of any of the task, job or job man-
ager objects may be stored in the database 869. The database
869 can be a relational database, or an object-oriented data-
base, such as database software or applications from Oracle®
or SQL Server from Microsoft®, or any other database
capable of storing the type of data and objects supporting the
operations described herein. The database 869 can be an in
process database 869 of the job manager 265 or it can be a
remote database 869 available on another computing device
102' or another server 260'. Furthermore, each instance of the
job manager 265A-265N could use a different database and
operating system than other instances of the job manager
265A-265N, or be using a local database while another job
manager 265A-265N uses a remote database on another
server 160'. One ordinarily skilled in the art will appreciate
the various deployments of local or remote database access
for each of the one or more job managers 265A-265N.

The job manager 265 can be configured to execute certain
functions based on changes of the state of a job in the queue
267. For example, the technical computing client 250 can
setup functions to be called when a job is created in a job
queue 267, when the job is queued, when a job is running or
when a job is finished. The job manager 265 is to call these
functions when the appropriate change in the state of job
occurs. In a similar manner, the task and job can be configured
to call specified functions based on changes in state of the task
or job. For example, a job may be configured to call a function
when a job is added to the queue, when a task is created, when
atask is completed, or when a task starts running. A task may
be configured to call a function when the task is started, or
running.

Referring still to FIG. 8, the technical computing client 250
submits a job, Job1, comprised of one or more tasks, such as
Task 1 and Task2, to the job manager 265. The job manager
receives the job, e.g., job1, and places the job into a job queue
267. The job runner 867 then obtains the one or more tasks
from the first job submitted to the job queue 267. A technical

10

15

20

25

30

35

40

45

50

55

60

65

26

computing worker 270 registers with the job manager 265 and
is listed in the worker pool 668 of the job manager 265. From
the worker pool 868, the job runner 867 determines a techni-
cal computing worker 270A-270N to submit the task for
processing. The technical computing worker 270A-270N
obtains the function to be executed from the definition of the
function in data structure of the task object, performs the
function and generates a result of the function for the task.
Then the technical computing worker 270 updates the task
object to provide a result of the task. For example, the task
object may have a field representing the output arguments
from the execution of the function defined by the task. The
output arguments may contain one or more arrays of data as
allowed by the programming language of MATLAB®. Addi-
tionally, the task object may contain an error field to which the
technical computing worker 270A-270N updated to indicate
any error conditions in performing the task or executing the
function of the task. The job manager 265 checks to see if this
is the last result to be obtained from a technical computing
worker 270A-270N for the job currently being processed. If
the result is the last result, the job manager 265 can provide
the set of task results for the completed job to the technical
computing client 250.

The MATLAB® programming enables you to write a
series of MATLAB® statements into a file, referred to as an
M-File, and then execute the statements in the file with a
single command. M-files can be scripts that simply execute a
series of MATL AB® statements, or they can be functions that
also accept input arguments and produce output. Further-
more, the MATLAB® programming language enables the
association of a callback function with a specific event by
setting the value of the appropriate callback property. A vari-
able name, function handle, cell array or string can be speci-
fied as the value of the callback property. The callback prop-
erties for objects associated with Simulation distribution
software are designed to accept any of the above described
configurations as the value of the callback property, and may
accept any other command, function or input parameter value
that are or may become available in the MATLAB® program-
ming language. This allows users of the MATLAB® pro-
gramming language to use the function calls they are familiar
with, without learning the object-oriented mechanism, and
take advantage of the distributed processing of tasks offered
by Simulation distribution software of the present invention.

In the exemplary object-oriented distributed system 905 of
FIG. 9, the technical computing client 250 creates or declares
a job object 760 residing in the job manager 265. The job
object comprises one or more task objects 970A-970N. The
job object 760 further defines properties associated with the
job, such as those job properties described in further detail
below. For example, a timeout property to specify the time
limit for completion of a job. Additionally, the minimum and
maximum number of technical computing workers to per-
form the tasks of the job can be set. The task object 970A-
970N is an object that defines a function to be executed by a
technical computing worker 270. The function contains a
MATLAB® command, input data and number of arguments.
The task object 970A-970N defines additional task proper-
ties, such as those defined below. For example, the task object
970A-970N may have a state property to indicate the current
state of the task. Additionally, the technical computing client
250 may interface with the job manager 265 through a job
manager object 965 residing on the job manager 265. In a
similar manner to the job object 760 and task objects 970A-
970N, the job manager object 965 may have properties to
define configuration and other details about the job manager
265 as described below. For example, the job manager object

US 9,183,347 B1

27

965 may have a hostname property to indicate the name of the
computer where a job queue exists, or a hostaddress property
to indicate the internet protocol address of the computer. For
any of the job manager object 965, job object 960 or task
objects 970A-970N, the technical computing client may not
instantiate a local object but may just have a proxy or facade
object to reference the object existing in the job manager 265.

Still referring to FIG. 9, the technical computing client 250
submits the job to the job manager 265 via the job object 965.
The job manager 265 obtains each of the task objects 970A-
770N from the job object 965. The job manager puts the job
of the job object 960 into the job queue 267. The job runner
867 obtains the one or more task objects 970A-970N from the
job object 960. The job runner 867 with the worker pool 868
determines a technical computing worker 270 to process a
task. The job runner 867 then submits a task, via a task object
970A-770N to an assigned technical computing worker 270.
The technical computing worker 270 obtains the function to
execute from the properties of the task object 970 A-970N and
performs technical computing of the task in accordance with
the function. The technical computing worker 270 then
obtains the results of the function and updates one or more
properties of the task object 970A-970N with information
about the results. In the case of any errors, the technical
computing worker 270 may update any error properties of the
task object 970A-970N. In a similar manner as the technical
computing client 250, the technical computing worker 270
may use proxy or facade objects to interface with the job 960,
job manager 965 or task 970A-970N objects residing in the
job manager 265. The job manager 265 then updates the job
object 960 with updated task objects 970A-970N containing
the results of each task. The job manager 265 may also update
other properties of the job object 760, such as start and finish
times of the job, to reflect other information or status of the
job. The job manager 265 then provides the updated job
object 760 to the technical computing client 250. The techni-
cal computing client 250 then can retrieve the results of each
task from the updatedjob object 960. One ordinarily skilled in
the art will recognize the various combinations of uses of the
properties and functions of these objects in performing the
operations described herein and in support of any of the
multiple modes of distribution as depicted in FIG. 4.

In an exemplary embodiment of the invention as depicted
in FIG. 9 and by way of example, the follow provides an
example of simulating a reaction in which one reactant expo-
nentially decays into a product, i.e. X—Z. A Stochastic Simu-
lation Algorithm (SSA) is used for the simulation. The steps
for setting such a distributed simulation and plotting the
results are set forth below.
Job manager

jm=findResource(‘jobmanager’,’'name’,*Shrikants_JM’);
Job

job=createJob(jm);
Tasks in the job

numruns=>5;

for i=1:numruns

task=create Task(job, ‘expdecay’, 2, {‘ssa’});

end
Capture command window output

alltasks=get(job, ‘Tasks’);

set(alltasks, ‘CaptureCommandWindowOutput’, true);
File Dependencies

set(job, ‘FileDependencies’,{ ‘P:

\Shrikant_Savant\sharedemo_scripts\dexpdecay\
expdecay.m’});
Submit job
submit(job);

5

10

15

20

25

30

35

40

45

50

55

60

65

28

Wait for results to complete
waitForState(job);
Capture output messages
outputmessages=get(alltasks,
put’);
Get all the results
results=getAllOutput Arguments(job);

‘Command WindowOut-

Plot

figure(2);
hold on;
for i = 1:numruns

plot(results {i,1},results {i,2});
end
legend(*X",Z");
title(‘Exponential Decay: X ->Z");
xlabel(*Time: sec’);
ylabel(*Chemical Species Concentration: No. of Molecules’);
axis([0 1 0 1007);
grid on;

The results of the distributed simulation can be seen in FIG.
10A. In this example, the M-file called is expdecay.m. The
contents of this M-File are shown below.

%
% File: expdecay.m
%
% May 2004
%
% Reactions:
%x->z
%
function [t x] = expdecay(solver)
if (nargin == 0)
solver =";
end
tfinal = 3.0; %2.5
logdec =1;
errortol = 0.05;
if (strempi(solver,"))
solver = ‘ssa’; % Default value
end
% Initial amounts and rates
x0 = 100;
70 =0;
rateconst = §;
% Model
m = sbiomodel(*Exponential Decay’);
% Reactions
reactionl = addreaction(m, ‘x ->z’);
klaw1 = reactionl.addkineticlaw(‘Mass Action’);
% Species
m.species(1).Initial Amount = x0;
m.species(2).Initial Amount = z0;
% Reactions
ratel = addparameter(reactionl , ‘k’, rateconst);
klaw1.K = ratel;
% Random state
clk = clock;
rstate = fix(sum(clk(end-1:end)));
% Simulate
if strempi(solver, ‘ssa’)
[t X] = sbiosimulate(m, solver, tfinal, logdec);
elseif strempi(solver, ‘explTau’)
[t X] = sbiosimulate(m, solver, tfinal, logdec, errortol);
elseif strempi(solver, ‘implTau’)
[t X] = sbiosimulate(m, solver, tfinal, logdec, errortol);
end
%eof

In addition to the object-oriented interface to task and job
management functionality of the distributed system, the pro-
gramming language of Simulation distribution software may
also support task distribution via high-level functional proce-

US 9,183,347 B1

29

dure calls. The MATL AB® programming language includes
procedural function calls such as eval() and feval() that
provide a quick and powerful procedure to execute functions.
Additionally, the MATLAB® programming language sup-
ports anonymous functions and function handles. Function
handles are useful when you want to pass your function in a
call to some other function when that function call will
execute in a different workspace context than when it was
created. Anonymous functions give you a quick means of
creating simple functions without having to create M-files
each time and can be viewed as a special subset of function
handles. An anonymous function can be created either at the
MATLAB® command line or in any M-file function or script.
Anonymous functions also provide access to any MATLAB®
function. The @ sign is the MATLAB® operator that con-
structs a function handle or an anonymous function, which
gives you a means of invoking the function. The MATLAB®
programming language enables the association of a callback
function with a specific event by setting the value of the
appropriate callback property. A variable name, function
handle, cell array or string can be specified as the value of the
callback property. The callback properties for objects associ-
ated with Simulation distribution software are designed to
accept any of the above described configurations as the value
of'the callback property, and may accept any other command,
function or input parameter value that are or may become
available in the MATLAB® programming language. This
allows users of the MATL AB® programming languageto use
the function calls they are familiar with, without learning the
object-oriented mechanism, and take advantage of the distrib-
uted processing of tasks offered by Simulation distribution
software of the present invention.

An example of this, wherein three stochastic solvers-SSA,
Explicit Tau, and Implicit Tau Leaping are used is provided
below.

Call dfeval
[T X]=dfeval(@expdecay, {‘ssa’,‘expltaw’,‘impltaun’},
‘JobManager’,*Shrikants_JM”);
Plot results

figure(3);

plot(T{1},X{1},*>,T{2},X{2},°0’,T{3},X{3},x")

legend(‘SSA: X’,*SSA: 7’,‘Expl Tau: X’,Expl Tau:
7’ ITmpl Tau: X, ‘Impl Tau: 7);

title(‘Exponential Decay: X—Z7);

xlabel(‘ Time: sec’);

ylabel(‘Chemical Species Concentration: No. of Mol-

ecules’);

axis([0 1 0 100));

grid on;

The results of the distributed simulation can be seen in FIG.
10B.

In alternative embodiments, the object-oriented interfaces
and/or functional procedures available in the programming
language, may be available in one or more application pro-
gramming interfaces, and may be available in one or more
libraries, software components, scripting languages or other
forms of software allowing for the operation of such object-
oriented interfaces and functional procedures. One ordinarily
skilled in the art will appreciate the various alternative
embodiments of the above class definitions, class method and
properties, package scope methods, functional procedures
and programming instructions that may be applied to manage
the distribution of tasks and jobs for distributed technical
computing processing of the present invention.

From an overall perspective and in view of the structure,
functions and operation of the system as described herein, the
current invention presents many advantages for distributed,

20

25

35

40

45

50

55

30

streaming and parallel technical computing processing sys-
tems. The system can handle a wide variety of user configu-
rations from a standalone system to a network of two
machines to a network of hundreds of machines, and from a
small task granularity to an extremely large task granularity
of parallel, and parallel and serial technical computing.

Referring to FIG. 11A, the distributed system 1110 sup-
ports the delegation of tasks from a technical computing
client 250 to remote technical computing workers 270A-
270N leveraging the processing capability of each of the
workstations 170A-170N hosting each of the technical com-
puting workers 270A-270N. The tasks are executed indepen-
dently of each other and do not require the technical comput-
ing workers 270A-270B to communicate with each other.

Still referring to FIG. 11A, the streaming, or serial, pro-
cessing system 1110 allows serial processing to occur via
multiple technical computing workers 270A-270N on mul-
tiple workstations 170A-170N. A technical computing client
250A submits a job requiring a task to be processed serially
from technical computing worker 270A to technical comput-
ing worker 270B then to technical computing worker 270N.
When technical computing worker 270A completes its tech-
nical computing of the task, technical computing worker
270A submits the task to technical computing worker 270B
for further processing. In a similar fashion, the task can be
submitted to additional technical computing workers 270N
for further processing until the task is complete in accordance
with its task definition. The last technical computing worker
270N to perform technical computing on the task submits the
result to the technical computing client 250.

The streaming processing system 1120 can take advantage
of specific workstations 170A-170N that may have faster
processors for performing processor intensive portions of
technical computing of the task or take advantage of technical
computing workers 270A-270N with access to specific data
sets or external control instrumentation as required for com-
putation of the task.

In FIG. 11B, a parallel system 1130 is depicted which
combines the distributed and streaming configuration of the
systems (1100 and 1110) in FIG. 11A. In brief overview,
technical computing workers 270A and 270B and 270N can
be executing a set of tasks independently of each other. Addi-
tionally, these technical computing workers can then submit
tasks to other technical computing workers to perform tech-
nical computing of' a task in a streaming fashion. For example,
technical computing worker 270A can submit a task for fur-
ther processing to technical computing worker 270B, and in
turn, technical computing worker 270B can submit the task
for further processing by technical computing worker 270N.
The technical computing worker 270N when it completes
processing may return a result back to the automatic task
distribution mechanism 260 or the technical computing client
250. This configuration provides for great flexibility in deter-
mining how to best distribute technical computing tasks for
processing based on many factors such as the types and avail-
ability of computing devices, network topology, and the
nature and complexity of the technical computing problem
being solved.

Many alterations and modifications may be made by those
having ordinary skill in the art without departing from the
spirit and scope of the invention. Therefore, it must be
expressly understood that the illustrated embodiments have
been shown only for the purposes of example and should not
be taken as limiting the invention, which is defined by the
following claims. These claims are to be read as including
what they set forth literally and also those equivalent elements

US 9,183,347 B1

31

which are insubstantially different, even though not identical
in other respects to what is shown and described in the above
illustrations.

What is claimed is:
1. A method comprising:
receiving a job from a technical computing client imple-
mented on a first computing device,
the receiving the job being performed by a second com-
puting device, and
the job including information identifying:
a first task associated with a first portion of a simula-
tion of a chemical reaction, and
a second task associated with a second portion of the
simulation of the chemical reaction;
determining a first technical computing worker, of a plu-
rality of technical computing workers, for performing
the first task based on one or more stochastic solvers and
a second technical computing worker, of the plurality of
technical computing workers, for performing the second
task based on the one or more stochastic solvers,
the determining the first technical computing worker
and the second technical computing worker being
performed by the second computing device;
submitting the first task to the first technical computing
worker and the second task to the second technical com-
puting worker,
the submitting being performed by the second comput-
ing device,
the first technical computing worker being associated
with a first technical computing environment for
executing the first task to simulate the first portion of
the simulation of the chemical reaction, and
the second technical computing worker being associated
with a second technical computing environment for
executing the second task to simulate the second por-
tion of the simulation of the chemical reaction;
obtaining a result of executing the first task from the first
technical computing worker and a result of executing the

second task from the second technical computing

worker,

the obtaining being performed by the second computing
device; and

providing the result of executing the first task and the result

of executing the second task to the first computing

device,

the providing being performed by the second computing
device.

2. The method of claim 1, further comprising:
providing a model of the chemical reaction to be simulated.
3. The method of claim 1, further comprising:
determining that the job does not specify a particular tech-
nical computing worker for performing the first task;
determining that the first technical computing worker is
available to perform the first task; and
determining the first technical computing worker for per-
forming the first task based on the first technical com-
puting worker being available to perform the first task.
4. The method of claim 1, where providing the result of
executing the first task and the result of executing the second
task includes:
determining whether the result of executing the first task
has been obtained from the first technical computing
worker; and
holding the result of executing the second task until the
result of executing the first task has been obtained from
the first technical computing worker.

5

20

25

30

35

40

45

50

55

60

65

32

5. The method of claim 1, where one or more properties
associated with the job include information identifying a
minimum quantity of technical computing workers for per-
forming the job,

the method further comprising:

determining that a quantity of technical computing
workers, of the plurality of technical computing
workers, that are available for performing the job is
greater than or equal to the minimum quantity of
technical computing workers; and

starting a processing of the job based on determining
that the quantity of technical computing workers that
are available for performing the job is greater than or
equal to the minimum quantity of technical comput-
ing workers.

6. The method of claim 1, where the job includes a plurality
of tasks,

the plurality of tasks including the first task and the second

task,

where one or more properties associated with the job

include information identifying a maximum quantity of

technical computing workers for performing the job, and

where the method further comprises:

preventing the plurality of tasks from being distributed
to a quantity of technical computing workers, of the
plurality of technical computing workers, that
exceeds the maximum quantity of technical comput-
ing workers.

7. The method of claim 1, further comprising:

determining a version of simulation software that is

installed on a computing device associated with the first
technical computing worker; and

where determining the first technical computing worker

and the second technical computing worker includes:

determining the first technical worker, for performing
the first task, based on the version of simulation soft-
ware that is installed on the computing device associ-
ated with the first technical computing worker.

8. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors of a first computing device, cause the
one or more processors to:
receive a job from a technical computing client imple-
mented on a second computing device,
the job including information identifying:
a first task associated with a first portion of a simu-
lation of a chemical reaction, and
a second task associated with a second portion of
the simulation of the chemical reaction;
determine a first technical computing worker, of a
plurality of technical computing workers, for per-
forming the first task based on one or more stochas-
tic solvers and a second technical computing
worker, of the plurality of technical computing
workers, for performing the second task based on
the one or more stochastic solvers;
submit the first task to the first technical computing
worker and the second task the second technical
computing worker,
the first technical computing worker being associ-
ated with a first technical computing environ-
ment for executing the first task to simulate the
first portion of the simulation of the chemical
reaction, and
the second technical computing worker being asso-
ciated with a second technical computing envi-

US 9,183,347 B1

33

ronment for executing the second task to simu-
late the second portion of the simulation of the
chemical reaction;
obtain a result of executing the first task from the first
technical computing worker and a result of execut-
ing the second task from the second technical com-
puting worker; and
provide the result of executing the first task and the
result of executing the second task to the second
computing device.

9. The non-transitory computer-readable medium of claim
8, where the instructions further comprise one or more
instructions to determine one or more respective properties
associated with each of the plurality of technical computing
workers, and

where the one or more instructions to determine the one or

more respective properties associated with each of the
plurality of technical computing workers include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
determine that the second technical computing
worker is associated with a computing device that
has a higher speed configuration relative to a com-
puting device associated with the first technical
computing worker; and
where the one or more instructions to submit the first
task to the first technical computing worker and the
second task to the second technical computing worker
include:
one or more instructions that, when executed by the
one or more processors, cause the one or more
processors to:
submit, to the second technical computing worker,
the second task based on:
the computing device associated with the second
technical computing device having the higher
speed configuration relative to the computing
device associated with the first technical com-
puting worker, and
atime required to perform the second task being
greater than a time required to perform the first
task.

10. The non-transitory computer-readable medium of
claim 8, where the instructions further comprise one or more
instructions to determine the first technical computing worker
and the second technical computing worker based on a net-
work topology associated with the first computing device, the
second computing device, and computing devices associated
with the plurality of technical computing workers.

11. The non-transitory computer-readable medium of
claim 8, where the instructions further comprise:

one or more instructions that, when executed by the one or

more processors, cause the one or more processors to:

determine that the job does not specify a particular tech-
nical computing worker for performing the first task;

determine that the first technical computing worker is
available to perform the first task; and

determine the first technical computing worker for per-

forming the first task based on the first technical com-
puting worker being available to perform the first task.

12. The non-transitory computer-readable medium of
claim 8, where the job includes a plurality of tasks,

where the plurality of tasks includes the first task and the

second task, and

10

20

25

30

40

45

50

55

60

65

34

where the one or more instructions to provide the result of
executing the first task and the result of executing the
second task include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
determine whether a result of an execution of each
task, of the plurality of tasks, has been obtained;
and
provide the result of executing the first task and the
result of executing the second task when the result
of the execution of each task has been obtained.
13. The non-transitory computer-readable medium of
claim 8, where the instructions further comprise:
one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:
determine one or more properties associated with the
job,
where the one or more properties associated with the
job include information identifying a minimum
quantity of technical computing workers for per-
forming the job,
determine, based on the one or more properties, that a
quantity of technical computing workers, of the plu-
rality of technical computing workers, that are avail-
able for performing the job is greater than or equal to
the minimum quantity of technical computing work-
ers; and
initiate a processing of the job based on the quantity of
technical computing workers that are available for
performing the job being greater than or equal to the
minimum quantity of technical computing workers.
14. The non-transitory computer-readable medium of
claim 8, where the job includes a plurality of tasks,
where the plurality of tasks includes the first task and the
second task,
where one or more properties associated with the job
include information identifying a maximum quantity of
technical computing workers for performing the job, and
where the instructions further comprise:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
prevent the plurality of tasks from being distributed to
a quantity of technical computing workers, of the
plurality of technical computing workers, that
exceeds the maximum quantity of technical com-
puting workers.
15. The non-transitory computer-readable medium of
claim 8, where the instructions further include:
one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:
determine a version of simulation software that is
installed on a computing device associated with the
first technical computing worker;
determine the first technical computing worker, for per-
forming the first task, based on the version of simu-
lation software that is installed on the computing
device associated with the first technical computing
worker.
16. A system comprising:
one or more processors to:
receive, from a technical computing client implemented
on a computing device, a job associated with a simu-
lation of a chemical reaction,
the job being associated with one or more tasks,

US 9,183,347 B1

35

a first task of the one or more tasks being associated
with a first portion of the simulation of the
chemical reaction, and

a second task of the one or more tasks being asso-
ciated with a second portion of the simulation of
the chemical reaction;

determine a first technical computing worker, of a plu-
rality of technical computing workers, for performing
the first task based on one or more stochastic solvers
and a second technical computing worker, of the plu-
rality of technical computing workers, for performing
the second task based on the one or more stochastic
solvers;
provide the first task to the first technical computing
worker and the second task to the second technical
computing worker;
obtain a first result associated with executing the first
task, from the first technical computing worker, and a
second result associated with executing the second
task from the second technical computing worker;
and
provide the first result and the second result to the com-
puting device.
17. The system of claim 16, where the one or more proces-
sors are further to:
determine that the job does not specify a particular techni-
cal computing worker for performing the first task;
determine that the first technical computing worker is
available to perform the first task; and
where, when determining the first technical computing
worker for performing the first task and the second tech-
nical computing worker for performing the second task,
the one or more processors are to:
determine the first technical computing worker for per-
forming the first task based on the first technical com-
puting worker being available to perform the first task.
18. The system of claim 16, where the job includes a
plurality of tasks,
where the plurality of tasks includes the first task and the
second task, and
where, when providing the first result and the second result,
the one or more processors are to:

36

determine whether a result of an execution of each task,
of the plurality of tasks, has been obtained; and
provide the first result and the second result when the
result of the execution of each task has been obtained.
5 19. The system of claim 16, where one or more properties
associated with the job include information identifying a
minimum quantity of technical computing workers for per-
forming the job, and
where the one or more processors are further to:
determine that a quantity of technical computing work-
ers, of the plurality of technical computing workers,
that are available for performing the job is greater than
or equal to the minimum quantity of technical com-
puting workers; and
initiate a processing of the job based on the quantity of
technical computing workers that are available for
performing the job being greater than or equal to the
minimum quantity of technical computing workers.
20. The system of claim 16, where the job includes a
plurality of tasks,
where the plurality of tasks includes the first task and the
second task,
where one or more properties associated with the job
include information identifying a maximum quantity of
technical computing workers for performing the job, and
where the one or more processors are further to:
prevent the plurality of tasks from being distributed to a
quantity of technical computing workers, of the plu-
rality of technical computing workers, that exceeds
the maximum quantity of technical computing work-
ers.
21. The system of claim 16, where the one or more proces-
sors are to:
determine a version of simulation software that is installed
on a computing device associated with the first technical
computing worker; and
determine the first technical computing worker, for per-
forming the first task, based on the version of simulation
software that is installed on the computing device asso-
ciated with the first technical computer worker.

15

20

30

35

#* #* #* #* #*

